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ABSTRACT &{_r}_@f

Many models for multivariate data analysis can be seen as specia cases of the linear dynamic or state
space model. Contrary to the classical approach to linear dynamic systems analysis, the model presented
here is developed from the socia science framework of approximation, data reduction and interpretation,
where generalization is required not only over time points but over subjects as well. Borrowing
concepts from the theory on mixture distributions, the linear dynamic model can be viewed as a
multilayered regression model, in which the output variables are imprecise manifestations of an
unobserved continuous process. An additional layer of mixing makes it possible to incorporate non-
normal as well as ordinal variables. Using the EM-agorithm, we find estimates of the unknown model
parameters, simultaneously providing stability estimates. We illustrate the applicability of the obtained
procedure through an empirical example.

INTRODUCTION

Many models for multivariate data analysis can be seen as special cases of a number of
genera models. One such general model is the linear dynamic model, also referred to as
the state space model or linear dynamic system (Ho & Kaman, 1966; Ljung, 1987;
Hannan & Deistler, 1988; Aoki, 1990). The linear dynamic model specifies relations
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between a set of input or exogenous variables, and a set of time-dependent output or
endogenous vaiables. The relations between input and output are channeled through
latent varigbles. The space spanned by the latent variables splits the input and output:

given this latent variables space, input and output are independent. The latent variables
thus accommodate the dependence of the output on the input. At the same time, the

latent variables accommodate the dependence of present measurements on past
measurements. The latent Sate variables follow a Markov chain (dthough the observed
output process may be much more complicated). Thus, the latent states at any time point

t depend on the latent dtates a time point #-1 only. As such, the space spanned by the

latent variables dso splits the past and the future: given the present state, past and future
are independent.

In date gpace andlyss, the dimensondity of the state space may be high and
may in fact be a lot higher than that of the dimengon of the input and output. This is
necessary to be able to capture the dynamic mechanisms that generate the time-
dependent process, especidly cyclicad processes. In many common applications of Sate
pace andysis, such as are to be found in engineering or process contral, the technique
has been geared to find high-dimensona exact solutions. This is so because the
scientific paradigm in these branches of science is directed srongly towards accurate
forecading. This paradigm prevals as wdl in time saies andyds, which modes
autoregressve and moving average processses for long chains (in practice: more than
50 time points) gathered for one observation unit (Box & Jenkins, 1976). Time series
andysis has srong theoretical links with state space andyss (Akake, 1976).

Our behaviord paradigm orients us towards data reduction and approximation,
description and interpretation. We will therefore drive to find low-dimensonad and
approximate, rather than high-dimensond and exact, solutions. For our purposes the
date soace has, preferably, lower dimensgondity than the st of combined input and
output variables. The latent variables thus reflect the notion common to factor andyss
and related techniques, of a latent condition, such as a trait or ability. To digtinguish our
technique from the classcd gpproach to sysems andyds, we have labded it linear
dynamic andyss. A second digtinction of our models to the usua application of date
goace andyss is that we will develop our modd specificaly for dStuations where not
one, but several observation units have been measured. This is a necessary reflection of
common research orientation, in which generdizability should be atained not only over
timepoints, but over subjects as wel. A third distinction of our modd is that it can
handle non-norma and ordinad measurements, which are a common occurrence in day-
to-day socid research practice.

The linear dynamic model can be viewed as a longitudinad extension of the well-
known MIMIC mode (Joreskog & Goldberger, 1975). Each new time point links a
new MIMIC modd to a chain of previous MIMIC modes: the linkage point is the latent
date. Structural equations models may thus seem a likely candidate for andysing the
type of models we are interested in, see MacCallum and Ashby (1986) and Oud, van
den Bercken and Essers (1990) for examples. However, for data with a large number
of replications in time (and in some cases with reaively smal numbers of subjects),
such techniques may be inefficient or even impossible to use. Larger numbers of time
points can lead to increesngly undable solutions and even negdaive edtimates of
variance of the error terms or disturbances. To counteract this, very large numbers of
subjects would be needed. However, in socid science practice the number of subjects
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tends to be smdler when the number of time points is large. In addition, we would like
to be able to incorporate non-norma and ordind variables in our modds. Structurd
equations modelling may use the so-cdled Asymptatic Didribution Free (ADF) method
to give parameter estimates for non-normally distributed variables (that may be seen as a
specid type of non-numerica varigbles), but this method uses 8-th order moments and
thus needs extremey large numbers of replications over subjects, a highly uncommon
occurrence in socid research Stuations with large numbers of time points.

Recent years have seen a number of more particular gpplications of structura
equations modelling to longitudind data The most notable of these are the modes
proposed for growth curve andysis (Rogosa & Willett, 1985; McArdle & Hamagami,
1991; Willett & Sayer, 1994; McArdle & Hamagami, 1996) that are close to random
coefficient models (Bryk & Raudenbusch, 1987). Muthén (1996) presented a number
of options to apply such models to data with binary outcome variables. Browne and du
Toit (1991) presented other related models for growth data, notably one that
incorporates concepts from ARMA modding. These modes dl investigate Stuations in
which growth on a continuous resp. dichotomous outcome varigble is reduced to a
number of parameters that describe the curve that can be fitted through each subject's
scores. These parameters are then related to background characteristics of the subjects,
such as age, gender, experimentd condition and the like. This type of modd is indeed
hierarchica in the sense that it first reduces the longitudind character of the data to a
smal number of essentidly cross-sectiona characterigtics, such as intercept and dope,
after which these are related to other cross-sectiond characterigtics.

Using lagged versons of variables (Molenaar, 1985; Molenaar, de Gooijer &
Schmitz, 1992; Browne, 1992; Van Buuren, 1997), ARMA-type modeing can be
goproximated through sructurd equations moddling. In this manner, a great many
complications are induced, however, as the assumption of independence of sample
dements is violated. The issues in andysing time series data usng sructura equations
modeling are discussed in Hershberger, Molenaar and Corneal (1996). In a related
fiedd, Molenaar and others (Molenaar, 1985; Molenaar et al. 1992) proposed various
possibilities for the andlyss of the dynamic factor modd, which can be seen as a specid
case without input of the dtate space model. However, our data andytic framework
includes Stuaions in which assessment of the impact of externa influences or input is
the explicit research objective. In addition, we prefer to restrict oursaves to Stuations in
which the sysem parameters are time-invariant, even if the developments on the latent
and outcome variables themsalves need not be so.

The latent Markov models proposed by Langeheine, van de Pol and others (van
de Pol & De Leeuw, 1986; van de Pol & Langeheine, 1989; Langeheine & van de Pal,
1990) are appropriate for analysng research questions in which the subjects
longitudinal responses on a number of categorica outcome varidbles are assumed to
depend upon a number of latent categoricd variables. The latent categoricd variables
folow a Makov chan, i.e, a paticular type of ARMA modd. In latent trangtion

+ analyds, subjects answering profiles on a number of categorica indicators are used to
andyse stage sequentiad modds of devdopment (Collins & Wugdter, 1992). None of
these modds have been equipped to incorporate the influence of exogenous variables.
Recently, Mooijaart and van Montfort (1997) proposed such a state space modd for
categoricd varidbles as an adaptation of the latent class modd. While ther modd
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appears efficient and easy to gpply, it is again limited in the sense that it is appropriate
only for datasets in which dl variables are categoricd.

The linear dynamic mode we will focus on can be seen as an extenson of the
DYNAMALS method proposed by Bijlevddld and De Leeuw (1991), which was
developed to andyse long non-numerical series gathered for one subject. In fact,
Bijlevdd and others (Bijlevdld & Legendre, 1993; Bijlevedd & Bijleveld, 1997)
proposed to extend the DYNAMALS modd to the analysis of long chains gathered for
severa subjects. However, neither the N=1 nor the N>1 DYNAMALS mode provides
dability  informetion.

We will build from the generd class of modes proposed by De Leeuw,
Bijleveld, van Montfort and Bijleveld (1997). Working from the concept of mixture
digtributions, they proposed to view the state space model as a multilayered regression
modd. The discrete output variables are then viewed as an imprecise manifestation of
an unobserved continuous process, i.e. the latent state variables. A second layer of
mixing makes it possble to obtain transformations of any numerica or non-numerica
output varidbles, usng for ingance a Box-Cox transdformation or some other useful
type of trandformation. As we are gpproximating not only the expected vaue of the
observed data, but dso its distributiona aspects, we will be able to test the significance
of regresson coefficents The idea of transforming non-numericad or non-normally
digributed variables to normally distributed ones in a time series context is not new:
Smith and Brunsdon (1989) proposed the transformation of multinomidly distributed
vaidbles to normaly distributed varidbles for the cdass of ARMA modds, that is
subsumed by our broader framework.

In the following, we will firsg discuss the dynamic modd. Next we will ded
with the derivation of maximum likdihood esimators for fitting the modd, as wel as
our optimdization procedure. We will subsequently describe an empirica example.

input input inputt
1 2 T

output output output
1 2 T

Figure 1. Schematic Representation of the Linear Dynamic Model
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THE DYNAMIC MODEL

Suppose that, for one subject, we have measured a atotal of T time points a number of
input variables and a number of output varigbles. The output varidbles are time-
dependent, the input variables may be time-dependent or time-independent. The impact
of the input on the output is mediated by unobserved latent variables. The impact of
previous measurements on future measurements is mediated by the same unobserved
latent varigbles. A schematic representation of the mode is given in Figure 1.

For each time point, we refer to the number of input varigbles as k, to the
number of output variables as m, and to the number of latent variables as p. We assume
that the trangtion matrices specifying the relations between the various components of
the modd are time-invariant, that is, we assume that the relaions between the input,
output and latent dtate variables are independent of time. We can then specify the
relations between the input, output and latent dtate variables as follows. The p latent
Sate space scores a any time point ¢t depend on those of the former time point ¢-1,
weighted by a trangtion matrix. As, however, the latent state space scores depend as
well on a weighted contribution of the input variables a time point ¢, this means thet the
latent state scores should be defined as follows:

with z; and z,_ | the vectors containing the p latent state space scores at time points t and
t-1 respectively, F a (p x p) matrix of regresson coefficients, x, the k-dimensona
vector of input varidbles a time point t, G a (p x k) matrix of regresson coefficients,
and € { a p-dimensional vector of disturbances.

Smilarly, the output varigbles a any time point t are predicted from a weighted
sum of the latent date space scores at that time point, which is in formula written as:

yi = Hz + 8, (1b)

with y, the m-dimensona vector of output variables a time point t H an (m x p)
matrix of regresson coefficients, and 8, an m-dimensond vector of measurement
errors. The vectors with error terms are needed because we do not expect a perfect fit to
red data The system needs a hypothetical starting point a t = 0, zy. Note how F, G
and H are indeed identical &t dl timepoints, i.e. F, = F, G, =G, andH; = H.

Equations (la) and (Ib) together describe the linear dynamic model; equation
(1) is often referred to as the system equation; equation (Ib) as the measurement
equation. Wewill refer to the trangtion matrix F as the state transition matrix, to G as
the control matrix, andto H as the measurement matrix.

When we have observed measurements for N subjects, we have N models such
asin Modd (1). We can write a combined model for dl subjects and dl time points as.

Zig =F zip 1+ G x + €, (2a)

yie=Hzi + 8 (2b)
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where z;, is the latent state variable for subject i a time point ¢, and X; 1, €; ¢, ¥i, and
8;; are defined correspondingly.

Note how F, G and H are identical across subjects as well, ie. Fi=F, G; =
G, and Hi = H.

Until now we did not make any assumptions about the digribution of the
random variables. Following De Leeuw et al. (1997) we now assume that the observed
yir @e a function of an m-dimensona set of unobserved normaly distributed |atent
variables 1; . Model (2) then becomes:

zi;=F 2z + G Xj¢+ Eip (3a)
Ny =Hz + 8, (3b)
Vig =F g(Mi0), (3¢)

where F is some kind of transformation depending on the vector a of unknown
transformatlon parameters. Thus, n;; can only be observed indirectly through ;.
Note that we set F, o = =Fy ie Fy is the same for al subjects a dl timepaints.

Figure 2 glva a schematlc representation of model (3) for one subject. For N
subjects, we have N such models stacked on top of one another.

¢ e e
‘F:,@T’ ---—F:,@—’
ORI CS

M| 8- n, O — N+

v
€

T

Y, Y, Y1

Figure 2. Schematic Representation of Linear Dynamic Model with Transformation of
the Output Variables
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In addition to the equations (3a,3b), we assume that

- XipYig(=1....Nr=1....T) aeobserved variables,

- 2 (i=1,....N;e=1,....T)isalatent variable

- Mg (i=1....N;t=1....T) is observed indirectly through y;; and F;

- Xip zi,tand N (=1....N;r=1.... T) ae normaly digtributed variables,

« &Lz €l X

- S Lz 8y Lxip

- E(g;p=E@d;p=0forechi=1,....N;t=1,....T;

- thee i ae homoscedastic over persons, but may be heteroscedastic over time
points, i.e. V(€;¢ = €

- the §;; are homoscedastic over persons, but may be heteroscedastic over time
points, i.e. V(8;,) = ‘¥.

Thus, the observed random output varigbles y;; ae transformed to unobserved
normally distributed output varigbles 1; ;. No assumptions are made on the distribution
of the y; .. In principle, the same could be done for the input variables. However, for
reasons of smplicity and overview, we will restrict ourselves in the next sections to the
case where the input variables have been completely observed.

FITTING THE LINEAR DYNAMIC MODEL

Before deriving a procedure for fitting the linear dynamic modd, we firs introduce
some smplifying assumptions. This causes no loss of generdity as the procedure we
present can be derived for the more complicated case in a straightforward manner.

We assume that the dimensiondlity of z is 1 and that z; o = 0. In that case the
latent state vector for subject i a time point ¢ reduces to the scaar z;,, the error vector
€ for subject i a time point ¢ reduces to the scalar €;, and the state transition matrix F
reduces to a scaar, that we will in the following write as ‘f. Equations (3a) and (3b)
can be rewritten as.

{ t
zip =fZip1+ 8+ € = 2 Pis8'Xis + Z Pis€is o (4a)
s=| s=1

with p,s = 5, and with g the k-dimensiona vector containing the elements of the (1 x
k) control matrix G, and

t t
. Mt =hzic. 8, =Y h P85 + 2 h piis + 8y (4b)
s=1 s=1
with h the m-dimensgond vector containing the dements of the (m x 1) measurement
matrix H.
The variance covariance matrices of the error terms in (4a) and (4b) can be
written as.
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t
V( Y, Pistig) = O (4c)
sl
t
VY, Wpis + 8i) = By, (4d)
s=1

where aso O, and ¥ are equd for dl i. (Note that also Ox, is now a scaar.)
We switch to matrix notation, defining:

t 0 0 0 0 0 &1
f 1 0 0 o 0 0 L 5)
2 f 10 . . .0 O €3
B=| 3 £ f 1 ... 0 0|, &= & ,
o i4
{T-1 §{T-2 (T3 {T-4 f 1 '
. &t

with €;a T - dimensond vector and cov €; = 8 (with ® a T x T diagond matrix).
Next, the T - dimensond vector z; is defined as.

Z{1 Xi1
Z Xi2
Zj3 Xi3

Z;=| zi4 |, andthe kT - dimensiond vector x; as X; =| Xj4

ZiT XiT

The mT - dimensond vectors é; and 1; are defined as:

8y Ny
o Ni2
i3 Ni3
T =1 nig
& Nir
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respectively, and cov §; = ¥(with Wan mT x mT (block)diagonal matrix containing the
¥, for the various time points)
Then we can write (4a), (4b), (4c) and (4d) in matrix notetion as:

z;=(B®g)x; + Bci,
=B®g)x;®h + (Beg;) 6 h+ 3§,
©+=V (Bg;)=B6B’,

%=V ((Be;)®H + 8;)= (BQB") ® (hh") + ¥,

O« thereby being a function of f and ®, with ® a T x T (block)diagona matrix
containing the @, for the various time points, and ¥ thereby being a function of f, @
and ¥ with Ydefined as above.

It follows that, after stacking the m;; for dl timepoints into a (T x M) méatrix 7,
we may decompose the complete likelihood into two parts:

L =L; (h¥F,Y.,Z,n). Lr){, 6,8,2,X),

where Y, Z and X contain the redizations for the output, latent State and input variables
for dl subjects a dl timepoints.

L, =rn)N2 | BeBTN2,

N N
exp -5 1Y @i - B 8 g) Xi)' BOB)'[X. (zi - (B ® g) )] }5(50)
i=l i=1

L, =2n) V2.1 (BOB") ® (hh’) + ¥ I™V2,

N
exp {- % [ (Fy 3)-((BOg)x)®h)]' [ (BOB")®(hh)+¥]!

N
3 (Fy (v)-(B®g)x)®M)] } | (5b)

i=1
As the complete likdihood function can be decomposed into two smpler pats, this
opens up the possbility to optimize the two parts separately.

ALGORITHM

A naurd dass of dgorithms for maximizing L is the Expectation-Maximization (EM)
dgorithm (Dempgter, Lard & Rubin, 1977). The EM-dgorithm consss of two
dternating steps. the E(xpectation)-step and the M(aximization)-step. In the E-step of
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the EM-algorithm the expectation of the sufficient statistics of the conditional
distribution has to be formulated. For our case, these sufficient statistics are defined as:

]

I
Z |-
Mz
=

E

&)

I
Z |-
M
=

[

B
"
Z |
M=
L
-N

£

I
Z |-
M=
=

N

We can formulate the expectations of these matrices, conditional on x and n as
functions of sample momentsm, ,, m,, and mnn

L1 N
m . X=""‘I\F ( 2 X Xi’ | xi’ni)
i=I

1
m-q = E E(Z"I n;' I x;m;) = m-fm,

1 N A
m,, = EE(Zﬂixi'l Xp M) = my,;
i=l

showmg thaIm xx » My and mnx need to be estimated once only in the optimalization
procedure;
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e A
m; = N E(D ziZ | ;M)
i=l

1 18 5
EZCOV(ZH xi,ni)+§z{E(Zi|xi,'ﬂi)}
i=l i=l

(B®g)m (B®g') +BOB’

. B (x‘)') [E(ql)(m)] E(Z‘C:)')
c GEEa (D EG R ()

which reduces asymptoticaly for large N to its first part only.

* 1 N . ' _
"G WG )

Xi ,
(m)E(ﬁ'ﬁﬂﬂ=

(o) 2 D L2 )1 ()0

which reduces asymptoticaly for large N to:

()

withi (i=1,....N) some abitrary integer, and E(x; z;') = rlex (B ® g'). Note that
the conditiond likelihood (Sb), given the redizations of x and %, is a function of the
unknown modd and transformation parameters, and of a number of observed sample
moments. Because 1, = F(y;,) for every i and ¢, the sample moments are thus dso a
function of the transformation parameters a.

In the second step of the EM-dgorithm, the M-step, we optimize the conditiona
likelihood function and find expressons for the unknown modd and transformation
parameters. We introduce a further smplification by assuming that m = 1, implying thet
the number of output variables a a certain time point equas 1. This amplification is no
reduction of generdity as again al expressons can be extended to the case where m >
1. We write the following conditiond likelihood function given x, | and a

|
Z |~
[N\ I~

1=1

1
N

IN k-

« 11 -
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L*=L].L;;

*
L;

L3

= E (log L; | x1 @)
const - % log | BEB' |
N m* ®eB)Y!.2m* BeB) ! (Bog
Nt [m? @BeBy!.2m}, BeB) ! Beg)

+m} (B ®g) BeB)! (Bog)];

=E (log Ly | x,n o)
const-g log I QI
Nm*Q'-2m* hQBag)
" WL My @ - <My, &
+h?m} (B®g) Q! Bog],

where Q = ((BOB') ® hh') + ¥,

(6)

(M

From (6) and (7) one can see that L* is a function of h, g, f, ©® and ¥. Optimdization
can be smplified consderably by formulating a bijection between (h, g, f, ©, ¥) and
(b, g, f, BOB', Q). We will thus write L* as a function of (h, g, f, BeB', Q), and
subsequently optimize the new expression.

Within the M-gtep, we will optimize with respect to the modd parameters h, g,
f, BOB', Q and the trandformation parameters a atematingly.

Setting the derivative of the likelihood function equa to zero with respect to the
various unknowns, it can be shown that:

tr [m,, Q" (B®g)]

h: * gy -1 ' H
tr [m,, (B®g)'Q '(B®g"]

tr [m;,(BOB)!(B+®g) + m; hQ !(B+®¢g))

"t [m) (BOg)(BOB) | (B+®g) + h’m” (BOg)Q (B+8g)] '

with By =

B - 1)
=2

- 12-

8)

®
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(BEB') = m}, - 2m; (B®g) + (B®g) m,} (BOg), (10)
and

Q =my -2m 5 h(BOg) + (BOE) m * (BRg) . {an
and

g= Mlm, (12)
where

M;; = tr [m,,(B®L) (BOB') )(BOI) + h2m 7 (BOL)Q ! (BRL)],
= tr [m,,(BEB) )(BL) + m* hQ!(BSL)],

with (i, j=1,.... k) and I, a vector with the i « th dement equalling 1, and &l other
eements equaling zero.

However, before we can optimize L* with respect to a, we have to specify F. Severd
options are available regarding the choice of F. It is possible to choose some specific
farnlly of digributions. If F, is a Box-Cox trans‘ormatlon (with only one parameter),
L* can be optimized easily with respect to a Such a Box-Cox transformation can be
written as:

Ylt = FEXI. ("lit),

(nlt)a
a

The estimation procedure for the unknown mode parameters h, g, f, ¥ © and a is thus
as follows

where F o = , witha # 0.

step 0.  Initidization
Choose garting vaues for h, g, f, ¥ © and a. From these compute starting
vaues for BeB' and Q.

sep la  E-step

Compute mxx, m* m , and m

Tm’ nx’

step |b. M-step
Compute h, g, f, BOB', Q and a dterndingly.

step2.  Repeat steps la and 1b until convergence.

sep3.  Compute © and Wusing h, g, f, BEB', and Q.

- 13-
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IDENTIFIABILITY

Solutions for the model defined above in (2) have rotational freedom. This can be seen
eesly if we define

Vig= HEFZ 1+ GXp+ € + 8 =
Hin,t-l + HGXi,t + Hei,t + ai,t.

Any solution for H can be replaced by the solutlon HR, W|th R some rotation matrlx
and zj..1, €; F, ad G replaced by R Z; .1, R° c”, R!'FR ad R°!G,
respectively. Thus, the modd is not identified without additiondl retrictions

In terms of the particular modd to which our derlvatlons apply if {9*5
h*, f*, var(z)*} is a feasible parameter solution, then {cg’, . . cgk, Zh var(z)
is an equivaent parameter solution in terms of modd fit (Wlth c ay arbltrary red vaue
unequd to zero). To solve this scding or rotational problem, we have to introduce a
condraint. The options for doing so are to set either h =1, g; = 1 or var(z;) = 1.
Compare Bijleveld and De Leeuw (199 1).

THE CHOICE OF INITIAL STATE

We have assumed the value of the dtate at timepoint O to be zero for each observation
unit. In principle, it is possble to modd zy as a modd parameter, which can be
edimated dong with the other parameters using the EM-dgorithm. However, if one
would restrict the class of feasble modes in the sense that the choice is made to center
the input and output variables to zero (that is. expectations are adl zero), then zy has to

be equa to zero for each subject (proof by contradiction). The importance of a proper
choice for the values of z depends on the vaue of f. The smdler f, the smdler the

impact of z, and the smaller the disturbance created by an improper choice of zg. Much
more can be said about the initid state, but this is outsde the scope of this paper.

EXAMPLE USING REAL DATA

To illugtrate our model, we have andysed a data set on the relationship between mood
and urge to smoke! (Olmstead, 1996). Data had been gathered for 35 subjects on two
consecutive days. Approximately every 20 minutes, subjects had filled in a

1 The authors wish to thank dr. L. Jamner for his kind permission to use the data. Data collection had
been supported by a grant from the National Institute of Neurological Disorders and Stroke Research

(grant no NS-34143) as well as by UC-TRDRP grant no 1RT0205.

-14-
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guestionnaire, registering their mood sates of the moment. They had aso registered
their urge to smoke. As the data had been gathered over a period of two days, every
series contained at least one big gap (when the subjects were degping); however, many
series contained other smaler gaps as well (for ingtance when subjects were driving,
engaged in ports, in meetings etc.). For our purposes, we selected dl uninterrupted
series that had at least 10 time points, retaining the first 10 time points of each. As such,
a number of subjects gppear severd times in the data set. A total number of 59 series
remaned in this way.

The mood varidbles that had been measured were: energy, tiredness, anxiety,
hostility, happiness and sadness. The mood variables had been measured on 7 point
scales, ‘urge to smoke had been recorded on a 7 point scae as well. All variables were
moderately to heavily skewed.

We ran our model on this 59 x 7 x 10 dataset. To solve for indeterminacy of
solutions, h was fixed a 1. This choice was based on the consderations that the
dimensondity of h equalled that of z, and that the envisaged Box-Cox transformation
gave subsequent liberty in the choice of transformation. We used Box-Cox
transformations for the input and output varigbles. The transformation functions were
assumed to be time-invariant. We gave dl the Box-Cox parameters sarting vaues equa
to one. Thisimplies that y and 1 are equd to each other in the firgs iteration step of the
EM-dgorithm only.

The overdl modd fit can be assessed objectivdy using, amongst others, the
Goodness of Fit Index (GFI) and the Adjusted Goodness of Fit Index (AGFI) (cf.
Bollen & Long, 1993). For cadculating these vaues, we use the transformed input- and
output varigbles, which are normdly distributed.

Table 1. Parameter Estimates, Variances and Box-Cox Parameters for Mood and Urge
to Smoke Data

Parameter Vdue (Variance) Box-Cox
Parameter Vaues
f 49 (.18) )
g energy .01 (.01 .9
tiredness .56 (.14) 4
anxiety 11 (.08) 1.0
hostility 09  (.08) 1.0
happiness 30  (.09) .6
sadness 01 (.01) 1.0
h 1 ) .8

The dgorithm converged rapidly to fit vaues of .95 (GFI) and .92 (AGFI), both of
which, being larger than .9, are quite acceptable vadues. We dso ran the agorithm
without the Box-Cox transformations (i.e. with al the Box-Cox parameters vaues
fixed & one). We used the loglikdihood retio datistic to compare the mode with
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trandformed variables to the mode without transformed variables. The vaue of this
loglikelihood ratio gtatistic turned out to be 17.9 with seven degrees of freedom, so that
we may conclude that the null hypothess with all Box-Cox parameters equa to one can
be rgected on the bass of the data (5% dggnificance leve). Using the Box-Cox
transformation (or another non-linear transformation) therefore gppears judtified.

The parameter estimates, with variances given between brackets and Box-Cox
transformation parameters are given in Table 1. The dgorithm converged to a
technicdly saidfactory solution for the linear dynamic system. The vdue of f is
between 0 and 1, indicating that a stable system has been modeled in which the values
of the latent state when unperturbed by outward influences converge to zero. The vaues
of the Box-Cox parameters show that for each timepoint the first, second and fifth input
varigble are trandformed non-linearly by the Box-Cox functions. The vaues of the
transformation furthermore show that the output variable ‘urge to smoke did indeed
behave nonlinearly.

Once the estimates of the mode parameters have been computed, their variances
may be found from the information matrix. This is the mairix of second order
derivatives with respect to the unknown parameters of the loglikdlihood function.

When we tested the hypothesis f =0, the likelihood ratio datistic and the t-
getigic showed thet f is ggnificant on a 5% leve. Thus, there is a Sgnificant impact of
the previous measurements on the present ones. Next, we tested the significance of
each of the sx input variadles, usng loglikdihood ratio datistics and t-datistics for
each regresson coefficient. From these tedts, it emerged that the fird, third, fourth and
sixth variable could be dropped out of the modd (probability levels of 0.7, 0.8, 0.7 and
10 respectivdy, and t-vdues smdler than 1.96). Only the second and fifth input
vaiadle are reevant datigticaly spesking (with probability levels of 0.04 and 0.05
repectivedy and t-vaues larger than 1.96). Both of these vaiables had been
transformed nonlinearly as can be seen from the Box-Cox parameter vaues.

From the estimated parameter vaues one can deduce that tiredness and previous
urge to smoke are the most important predictors for urge to smoke. Happiness is a less
important predictor. Urge to smoke is high when subjects are tired, when ther urge to
smoke was high a the previous time point, and (though less particularly s0) when they
are happy. Energy, anxiety, hogtility and sadness play hardly any role a dl.

DISCUSSION

In the above, we presented an extenson to the existing methodology for multivariate
pand data that is both ussful and efficient. The modd is useful as it can handle
gtuations with severad subjects and more than just a few time points or waves. The
model can eadily incorporate non-norma and ordind output variables. An advantage of
our method over exiging methodology for such data andytic Stuations, is that our
technique provides gability information on the parameter estimates. While this was not
presented in the example give above, the variances of the parameters estimates can be
used to compute confidence intervas, which may be even more easly interpretable. An
additiond advantage, not immediately obvious from our formulas, is that it is not
necessary for al subjects to have series of equd length: T; # T. This means that
subjects who drop out of the study before the end of the longitudind research phase can
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be incorporated in the andysis up to the last time point they participated. Dropout is one
of the most saious vdidity problems in longitudind research, which becomes
progressively worse the longer the observation period and is a generdly non-random
process. The posshility to retain subjects for as long as they partook in the study, is
thus a true advantage over techniques such as LISREL or MANOVA, that need
complete series. Hierarchicd models aso alow subjects to have series of unequa
length. The type of tempora developments captured by our type of modd is, however,
far more generd than those featuring in hierarchical modes, such as linear or quadratic.
A second advantage of our models over structurd equations models, is that, whereas in
LISREL the inverse of a (kT+mT) x (kT+mT) matrix has to be computed, in our
method the inverse has to be computed of one matrix that has dimensondity pT x pT
and one matrix that has dimensond@ mT x mT. This makes a consderable difference
in computing time, computer memory and precison.

From our admittedly limited experience thus far, our method appears to
converge swiftly. This is probably due to the bijection between B&B' and © on the one
hand and Q and Won the other hand. Our method can be sped up even further if it can
be safely assumed that the variance covariance matrices of the error terms are equa not
only across subjects, but over time points as well. In that case, the mT x mT matrix Q
reduces to an m x m matrix, which consderably smplifies the inverson problem in
(8), (9), (10), (11) and (12). We could dso have used a step-function for non-linearly
transforming the output varigbles. However, this would have introduced many more
parameters to our modd, and would thus have implied a less parsmoneous model.

All the model simplifications introduced in the course of this paper can be gotten
rid of again, if necessxy. This will make the derivations, and computations, more
complicated. In that case, the agorithm will take longer to converge. However, given
our experiences thus far with exceptionaly speedy convergence, we do not expect this
to prove a congraint of any practical relevance.

In our example, we fixed the vaue of h & 1 to solve the identification problem.
In generd, fixing the variance of the latent state space values may be a more appropriate
policy, as it constitutes a fairly unequivocal choice, and is similar to other
dandardizations in comparable data andytic Stuations (eg. factor andyss).

For behaviord applications, it may be useful to be able to compare subjects with
respect to their latent state scores. Our technique does not produce such scores.
Following Oud et al. (1990) and Oud, van Leeuwe and Jansen (1993), laent Sate
scores may be found using the Kaman filter (Kdman, 1960). Assgning an arbitrary
darting vaue, vaues for the latent state scores can be computed using the transmission
parameters, expected values and (co)variances of the error terms. The Kaman filter is
known to become independent of the starting vaues after a very smdl number of time
points, in practice this may occur as swiftly as after three to five time points from t.

The practicd relevance of our modd will have to be tesed by extensve
goplication on generated as well as empiricd data. The addition of transformations for
tnput variables as well as categorica variables would further increase this relevance.
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