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ABSTRACT

Many models for multivariate data analysis can be seen as special cases of the linear dynamic or state
space model. Contrary to the classical approach to linear dynamic systems analysis, the model presented
here is developed from the social science framework of approximation, data reduction and interpretation,
where generalization is required not only over time points but over subjects as well. Borrowing
concepts from the theory on mixture distributions, the linear dynamic model can be viewed as a
multilayered regression model, in which the output variables are imprecise manifestations of an
unobserved continuous process. An additional layer of mixing makes it possible to incorporate non-
normal as well as ordinal variables. Using the EM-algorithm, we find estimates of the unknown model
parameters, simultaneously providing stability estimates. We illustrate the applicability of the obtained
procedure through an empirical example.

a INTRODUCTION

Many models for multivariate data analysis can be seen as special cases of a number of
general models. One such general model is the linear dynamic model, also referred to as
the state space model or linear dynamic system (Ho & Kalman, 1966; Ljung, 1987;
Hannan & Deistler, 1988; Aoki, 1990). The linear dynamic model specifies relations
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between a set of input or exogenous variables, and a set of time-dependent output or
endogenous variables. The relations between input and output are channeled through
latent variables. The space spanned by the latent variables splits the input and output:
given this latent variables space, input and output are independent. The latent variables
thus accommodate the dependence of the output on the input. At the same time, the
latent variables accommodate the dependence of present measurements on past
measurements. The latent state variables follow a Markov chain (although the observed
output process may be much more complicated). Thus, the latent states at any time point
t depend on the latent states at time point t-l only. As such, the space spanned by the
latent variables also splits the past and the future: given the present state, past and future
are independent.

In state space analysis, the dimensionality of the state space may be high and
may in fact be a lot higher than that of the dimension of the input and output. This is
necessary to be able to capture the dynamic mechanisms that generate the time-
dependent process, especially cyclical processes. In many common applications of state
space analysis, such as are to be found in engineering or process control, the technique
has been geared to find high-dimensional exact solutions. This is so because the
scientific paradigm in these branches of science is directed strongly towards accurate
forecasting. This paradigm prevails as well in time series analysis, which models
autoregressive and moving average processses for long chains (in practice: more than
50 time points) gathered for one observation unit (Box & Jenkins, 1976). Time series
analysis has strong theoretical links with state space analysis (Akaike, 1976).

Our behavioral paradigm orients us towards data reduction and approximation,
description and interpretation. We will therefore strive to find low-dimensional and
approximate, rather than high-dimensional and exact, solutions. For our purposes the
state space has, preferably, lower dimensionality than the set of combined input and
output variables. The latent variables thus reflect the notion common to factor analysis
and related techniques, of a latent condition, such as a trait or ability. To distinguish our
technique from the classical approach to systems analysis, we have labeled it linear
dynamic analysis. A second distinction of our models to the usual application of state
space analysis is that we will develop our model specifically for situations where not
one, but several observation units have been measured. This is a necessary reflection of
common research orientation, in which generalizability should be attained not only over
timepoints, but over subjects as well. A third distinction of our model is that it can
handle non-normal and ordinal measurements, which are a common occurrence in day-
to-day social research practice.

The linear dynamic model can be viewed as a longitudinal extension of the well-
known MIMIC model (Jiireskog  & Goldberger, 1975). Each new time point links a
new MIMIC model to a chain of previous MIMIC models: the linkage point is the latent
state. Structural equations models may thus seem a likely candidate for analysing the
type of models we are interested in, see MacCallum  and Ashby (1986) and Oud, van
den Bercken and Essers (1990) for examples. However, for data with a large number
of replications in time (and in some cases with relatively small numbers of subjects),
such techniques may be inefficient or even impossible to use. Larger numbers of time
points can lead to increasingly unstable solutions and even negative estimates of
variance of the error terms or disturbances. To counteract this, very large numbers of
subjects would be needed. However, in social science practice the number of subjects
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tends to be smaller when the number of time points is large. In addition, we would like
to be able to incorporate non-normal and ordinal variables in our models. Structural
equations modelling may use the so-called Asymptotic Distribution Free (ADF) method
to give parameter estimates for non-normally distributed variables (that may be seen as a
special type of non-numerical variables), but this method uses 8-th order moments and
thus needs extremely large numbers of replications over subjects, a highly uncommon
occurrence in social research situations with large numbers of time points.

Recent years have seen a number of more particular applications of structural
equations modelling to longitudinal data. The most notable of these are the models
proposed for growth curve analysis (Rogosa & Willett, 1985; McArdle & Hamagami,
1991; Willett & Sayer, 1994; McArdle & Hamagami, 1996) that are close to random
coefficient models (Bryk & Raudenbusch, 1987). MuthCn  (1996) presented a number
of options to apply such models to data with binary outcome variables. Browne and du
Toit  (1991) presented other related models for growth data, notably one that
incorporates concepts from ARMA modeling. These models all investigate situations in
which growth on a continuous resp. dichotomous outcome variable is reduced to a
number of parameters that describe the curve that can be fitted through each subject’s
scores. These parameters are then related to background characteristics of the subjects,
such as age, gender, experimental condition and the like. This type of model is indeed
hierarchical in the sense that it first reduces the longitudinal character of the data to a
small number of essentially cross-sectional characteristics, such as intercept and slope,
after which these are related to other cross-sectional characteristics.

Using lagged versions of variables (Molenaar, 1985; Molenaar, de Gooijer &
Schmitz,  1992; Browne, 1992; Van Buuren, 1997),  ARMA-type modeling can be
approximated through structural equations modelling. In this manner, a great many
complications are induced, however, as the assumption of independence of sample
elements is violated. The issues in analysing time series data using structural equations
modelling are discussed in Hershberger, Molenaar and Cornea1 (1996). In a related
field, Molenaar and others (Molenaar, 1985; Molenaar et al. 1992) proposed various
possibilities for the analysis of the dynamic factor model, which can be seen as a special
case without input of the state space model. However, our data analytic framework
includes situations in which assessment of the impact of external influences or input is
the explicit research objective. In addition, we prefer to restrict ourselves to situations in
which the system parameters are time-invariant, even if the developments on the latent
and outcome variables themselves need not be so.

The latent Markov models proposed by Langeheine, van de Pol and others (van
de Pol & De Leeuw, 1986; van de Pol & Langeheine, 1989; Langeheine & van de Pol,
1990) are appropriate for analysing research questions in which the subjects’
longitudinal responses on a number of categorical outcome variables are assumed to
depend upon a number of latent categorical variables. The latent categorical variables
follow a Markov chain, i.e., a particular type of ARMA model. In latent transition

- analysis, subjects’ answering profiles on a number of categorical indicators are used to
analyse stage sequential models of development (Collins & Wugalter, 1992). None of
these models have been equipped to incorporate the influence of exogenous variables.
Recently, Mooijaart and van Montfort (1997) proposed such a state space model for
categorical variables as an adaptation of the latent class model. While their model
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appears efficient and easy to apply, it is again limited in the sense that it is appropriate
only for datasets  in which all variables are categorical.

The linear dynamic model we will focus on can be seen as an extension of the
DYNAMALS method proposed by Bijleveld and De Leeuw (1991), which was
developed to analyse long non-numerical series gathered for one subject. In fact,
Bijleveld and others (Bijleveld & Legendre, 1993; Bijleveld & Bijleveld, 1997)
proposed to extend the DYNAMALS model to the analysis of long chains gathered for
several subjects. However, neither the ZV=l  nor the N>l DYNAMALS model provides
stability information.

We will build from the general class of models proposed by De Leeuw,
Bijleveld, van Montfort and Bijleveld (1997). Working from the concept of mixture
distributions, they proposed to view the state space model as a multilayered regression
model. The discrete output variables are then viewed as an imprecise manifestation of
an unobserved continuous process, i.e. the latent state variables. A second layer of
mixing makes it possible to obtain transformations of any numerical or non-numerical
output variables, using for instance a Box-Cox transformation or some other useful
type of transformation. As we are approximating not only the expected value of the
observed data, but also its distributional aspects, we will be able to test the significance
of regression coefficients. The idea of transforming non-numerical or non-normally
distributed variables to normally distributed ones in a time series context is not new:
Smith and Brunsdon (1989) proposed the transformation of multinomially distributed
variables to normally distributed variables for the class of ARMA models, that is
subsumed by our broader framework.

In the following, we will first discuss the dynamic model. Next we will deal
with the derivation of maximum likelihood estimators for fitting the model, as well as
our optimalization procedure. We will subsequently describe an empirical example.

Iinput
T

Figure 1. Schematic Representation of the Linear Dynamic Model
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THJ3  Dmmnc MODEL

Suppose that, for one subject, we have measured at a total of T time points a number of
input variables and a number of output variables. The output variables are time-
dependent, the input variables may be time-dependent or time-independent. The impact
of the input on the output is mediated by unobserved latent variables. The impact of
previous measurements on future measurements is mediated by the same unobserved
latent variables. A schematic representation of the model is given in Figure 1.

For each time point, we refer to the number of input variables as k, to the
number of output variables as m, and to the number of latent variables as p. We assume
that the transition matrices specifying the relations between the various components of
the model are time-invariant, that is, we assume that the relations between the input,
output and latent state variables are independent of time. We can then specify the
relations between the input, output and latent state variables as follows. The p latent
state space scores at any time point t depend on those of the former time point t-I,
weighted by a transition matrix. As, however, the latent state space scores depend as
well on a weighted contribution of the input variables at time point t, this means that the
latent state scores should be defined as follows:

with zt and zt- 1 the vectors containing the p latent state space scores at time points t and
t-I respectively, F a @  x p) matrix of regression coefficients, xt the k-dimensional
vector of input variables at time point t,  G a @  x k) matrix of regression coefficients,
and E r a p-dimensional vector of disturbances.

Similarly, the output variables at any time point t are predicted from a weighted
sum of the latent state space scores at that time point, which is in formula written as:

yt  = H q + a,,

with yt the m-dimensional vector of output variables at time point t,  H an (m x p)
matrix of regression coefficients, and 6, an m-dimensional vector of measurement
errors. The vectors with error terms are needed because we do not expect a perfect fit to
real data. The system needs a hypothetical starting point at t = 0, ZO.  Note how F, G
and H are indeed identical at all timepoints, i.e. F,  = F, G, = G, and H, = H.

Equations (la) and (lb) together describe the linear dynamic model; equation
(la) is often referred to as the system equation; equation (lb) as the measurement
equation. We will refer to the transition matrix F as the state transition matrix, to G as
the control matrix, and to H as the measurement matrix.

When we have observed measurements for N subjects, we have N models such
as in Model (1). We can write a combined model for all subjects and all time points as:

Zi,t = F Zi,t-l  + G Xi,t  + ~i,tv

Yi,t  =  H Zi,t + h,tp

CW
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where Zi,t is the latent state variable for subject i at time point t, and Xi,t, Ei,t, yi,t  and
6i,t are defined correspondingly.

Note how F, G and H are identical across subjects as well, i.e. Fi = F, Gi s
G, and Hi E H.

Until now we did not make any assumptions about the distribution of the
random variables. Following De Leeuw et al. (1997) we now assume that the observed
yi,t are a function of an m-dimensional set of unobserved normally distributed latent
variables qi,t.  Model (2) then becomes:

Zi,t  = F Zi,t-l + G Xi,t + Ei,tv (34

qi,t = H Zi,t + h,ty (3b)

Yi,t  = F d(lli,t)y (3c)

where F,  is some kind of transformation depending on the vector a of unknown
transformation parameters. Thus, qi,t can only be observed indirectly through yi,t.
Note that we set Foi t = F,,  i.e. Fo is the same for all subjects at all timepoints.

Figure 2 gives a schematic representation of model (3) for one subject. For N
subjects, we have N such models stacked on top of one another.

Figure 2. Schematic Representation of Linear Dynamic Model with Transformation of
the Output Variables
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In addition to the equations (3a,3b),  we assume that

- Xi,t,  yi,r (i = 1, . . . . N;  t = 1, . . . . 2”)  are observed variables;
- Zi,t (i = 1, . . . . N;  t = 1, . . . . 7) is a latent variable;
- qi,t  (i =  1, . . . . N;  t = 1, . . . . 7)  is observed indirectly through yi,t and F;
- xi,t, Zi,t and qi,t (i =  1, . . . . N;  t = 1, . . . . 7)  are normally distributed variables;

- Ei,t  -L Zi,t-1;  Ei,t L Xi,t;
- ai,t  1 Zi,t;  &i,t -L Xi,t;
- E(Ei,t) = E(&i,t)  = 0 for each i = 1, . . . . N;  t = 1, . . . . T;
- the E i,t are homoscedastic over persons, but may be heteroscedastic over time

points, i.e. V(Ei,t) = 0,;
- the Si,t  are homoscedastic over persons, but may be heteroscedastic over time

points, i.e. V(Qi,t)  = 9.

Thus, the observed random output variables yi,t are transformed to unobserved
normally distributed output variables qi,t. No assumptions are made on the distribution
of the yi,t. In principle, the same could be done for the input variables. However, for
reasons of simplicity and overview, we will restrict ourselves in the next sections to the
case where the input variables have been completely observed.

FITTING THE LINEAR DYNAMIC MODEL

Before deriving a procedure for fitting the linear dynamic model, we first introduce
some simplifying assumptions. This causes no loss of generality as the procedure we
present can be derived for the more complicated case in a straightforward manner.

We assume that the dimensionality of z is 1 and that Zi,o = 0. In that case the
latent state vector for subject i at time point t reduces to the scalar Zi,t, the error vector
&i,t  for subject i at time point t reduces to the scalar q,+  and the state transition matrix F
reduces to a scalar, that we will in the following write as ‘f. Equations (3a) and (3b)
can be rewritten as:

1

Zi,t  = f  Zi,t-1  +  g’Xi,t  +  Ei,t  = C Ptsg’xi,s + C Pt&i,s  3 W
s=l S=l

with pts  = Foss, and with g the k-dimensional vector containing the elements of the (1 x
k) control matrix G, and

a
%,t  = h  Zi,t + %,t  =C h  Ptsg’xi,s  +  C h  Pt&i,s  +  %,t  9 W)

s=l Sl
with h the m-dimensional vector containing the elements of the (m x 1) measurement
matrix H.

The variance covariance matrices of the error terms in (4a) and (4b) can be
written as:

- 7 -
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V( i p&i,& = @*t;
s=l

where also O*t  and Y!,  are equal for all i. (Note that also O+ is now a scalar.)
We switch to matrix notation, defining:

.

1 0 0 0 . . . 0 0
f 1 0 0 . . . 0 0
P f 1 0 . . . 0 0
fj f2 f 1 .**  0 0
. . . . . . . . .

k-1  fT-2 fT-3 f-L4 : : : i i

.

3 &iE

&il

&i2

&i3

Ei4

.

EiT
I -

,

with Ei a T - dimensional vector and cov Ei z 8 (with 8 a T x T diagonal matrix).
Next, the T - dimensional vector Zi is defined as:

Zi ~

ZiT
.

, and the kT  - dimensional vector Xi as: Xi 1

The mT - dimensional vectors 6i and qi are defined as:

. .

8.1 1

6.12

ai
6.14

- 8 -
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xi2
xi3
xi4
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XiT
m !*
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respectively, and cov Si = \y(with  Yan mT x mT (block)diagonal  matrix containing the
Yt  for the various time points)

Then we can write (4a),  (4b),  (4c) and (4d) in matrix notation as:

Zi  = (B @ g’)  xi  + BEi  7

Tli = (B @ g’)  Xi  @ h + (BEi)  6 h + 6i 3

e*=V(BEi)=B@B’,

‘4% = V ((BE  i ) @ H + 6i ) = (BQB’) 8 (hh’) + Y,

O*  thereby being a function of f and 8, with 0 a T x T (block)diagonal matrix
containing the C+  for the various time points, and % thereby being a function of f, 0
and Z with Ydefined as above.

It follows that, after stacking the qit  for all timepoints into a (T x m) matrix vi,
we may decompose the complete likelihood into two parts:

L = L1  WW,,Y,Zq). L2(f, eg,z,X),

where Y, Z and X contain the realizations for the output, latent state and input variables
for all subjects at all timepoints.

Ll = (2~)-~‘~  . I BQB’I-N’2.

exp  (- i [t (Zi - (B  @ g’)  Xi)]’ (BeB’)-’  [f  (Zi - (B @ g’)  xi)] } ;(5a)
i=l i=l

L2 = (2~)-~‘~  . I (BOB’) C3 (hh’) + Y I-N’2.

exp (- $ [$J (F, (yi)-((B@g’)Xi)@h)]’  [ (BBB’)@(hh’)+Ylsl
i=l

Lit  (pa (Yi)-((B@g’)xi)@h)I  > * (W

As the complete likelihood function can be decomposed into two simpler parts, this
opens up the possibility to optimize the two parts separately.

.

ALGORITHM

A natural class of algorithms for maximizing L is the Expectation-Maximization (EM)
algorithm (Dempster, Laird & Rubin,  1977). The EM-algorithm consists of two
alternating steps: the E(xpectation)-step and the M(aximization)-step. In the E-step of
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the EM-algorithm the expectation of the sufficient statistics of the conditional
distribution has to be formulated. For our case, these sufficient statistics are defined as:

1 N
mxx=  -N c Xi Xi’  ;

i=l

1 N
mzz=  -  ZiZi’  ;

N c
i=l

1 N
mxz=  - c

1 .
N  i=l  xi zi  ’

We can formulate the expeciationa  of thesz matrices, conditional on x and q as
functions of sample moments m,,, m.,,, and mm,:

*
m = A-  E ( 5 Xi  Xi’ I Xi,T)i  ) = I;lxx,

X X -  N
i=l

4x= i E (5 Tl i Xi’  I Xi,qi) = Anx;
i=l

showing that rnxt , m,*,  and qx need to be estimated once only in the optimalization
procedure;

- l o -
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m,*,  = i E(g  ZiZi’I’iVT)i)

i=l

1 N 1 N
= k C  cov  ( zi I xi,qi >  + i C  {E ( Zi 1 Xi,fli  >I2

i=l i=l

= (B CO g’) rnxt (B @  g’)’ + B8B’

which reduces asymptotically for large N to its first part only.

* N
‘E( xi

=( Y

Zi’ I Xi,T)i  ) =
N i=l rli

1 N  Xi
=

N =( 1i=l rli
E’ (Zi I Xi,T)i)  =

which reduces asymptotically for large N to:

with i (i = 1, . . . . IV) some arbitrary integer, and E(Xi  Zi’)  = A,,  (B C3  g’). Note that
the conditional likelihood (5b),  given the realizations of x and q, is a function of the
unknown model and transformation parameters, and of a number of observed sample
moments. Because Ilit = Fo(yit)  for every i and t, the sample moments are thus also a
function of the transformation parameters a.
. In the second step of the EM-algorithm, the M-step, we optimize the conditional
likelihood function and find expressions for the unknown model and transformation
parameters. We introduce a further simplification by assuming that m = 1, implying that
the number of output variables at a certain time point equals 1. This simplification is no
reduction of generality as again all expressions can be extended to the case where m >
1. We write the following conditional likelihood function given x, q and a:
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LT = E (log L1  1 x,q a>

= const - -;logIBQB’I

- ; tr [ rnzt (B8B’)-’ - 2 rn& (B0B’)-1(BC3g’)

+ m,*, (B C3 g’)’ (BOB’)-’ (B@g’) ] ; (6)

G = E (log L2 1 x,q a>

= const - zN  log I Q I

- ;tr[ m$,Q-1 - 2 m,*, hQ“(B@g’)

+ h2  m,*, (B 63 g’)’ Q-’ (Bog’)  1, (7)

where Q = ((B8B’) C3 hh’) + Y.

From (6) and (7) one can see that L* is a function of h, g, f, 0 and Y.  Optimalization
can be simplified considerably by formulating a bijection  between (h, g, f, S, Y) and
(h g, f, B@B’,  Q>. W e will thus write L” as a function of (h, g, f, B0B’,  Q), and
subsequently optimize the new expression.

Within the M-step, we will optimize with respect to the model parameters h, g,
f, B0B’,  Q and the transformation parameters a altematingly.

Setting the derivative of the likelihood function equal to zero with respect to the
various unknowns, it can be shown that:

h =
tr b&Q-l@@g')l

tr [m,*,  (B@g’)‘Q-1(BC3g’)]  ’

a f =
tr [m,*,(BOB’>-l(B*@g’)  + m$hQ-1(B&3g’)]

tr [m,*,(B~g’)‘(BoB’>-l(B*~g’)  + h2mx\(B@g’)‘Q-1(B&9g’)]  ’

(B  - I>withB*= f .

- 12-
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(B8B’)  = m,*, - 2%:  (B@g’)’  + (B@g’)  rnxt  (B@g’)’  , (10)

and

Q = TG - 2-t  h (B@g’)’  + h2(B@g’)’  m,*,  (B@g’)  ,

and

g = M-‘m,

(11)

(12)

where

Mij  = tr  [m~x(B@I~)‘(BOB’)-l)(B@I$  + h2m,*,(B~I~)‘Q-‘(B~I~)]  ,

mi = tr [m,*,(B~B’)-l)(B@I~)  + m,*,  h Q-*(B@I$]  ,

with (i, j = 1, . . . . k) and Ii a vector with the i - th element equalling 1, and all other
elements equalling zero.

However, before we can optimize L* with respect to a, we have to specify Fo. Several
options are available regarding the choice of F,. It is possible to choose some specific
family of distributions. If F,  is a Box-Cox transformation (with only one parameter),
L” can be optimized easily with respect to a. Such a Box-Cox transformation can be
written as:

Yit = Fi (rlit),

where F  a = (rliJa  - l , with a # 0.
a

The estimation procedure for the unknown model parameters h, g, f, y 0 and a is thus
as follows:

step 0. Initialization
Choose starting values for h, g, f, y 0 and a. From these compute starting
values for B8B’  and Q.

step la. E-step
Compute m,*,, m,*,,  m,*,,  m,*,  and rr&.

-step  lb. M-step
Compute h, g, f, B0B’,  Q and a alternatingly.

step 2. Repeat steps la and lb until convergence.

step 3. Compute 8 and Yusing  h, g, f, B8B’,  and Q.

- 13-
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IDENTIFIABUIY

Solutions for the model defined above in (2) have rotational freedom. This can be seen
easily if we define:

Yi,t = H (F Zi,t-l  + G Xi,t  + Ei,t)  + 6i,t  =

HFzi,t-l + HGxi,t + HEi,t  + ai,t.

Any solution for H can be replaced by the solution HR, with R some rotation matrix,
and  Zi,t-lv  Ei,t, F, and G replaced by R-‘zi,t-l,  R-‘tTi,t,  R-‘FR and R-lG,
respectively. Thus, the model is not identified without additional restrictions.

In terms of the particular model to which our derivations apply; if {g* ,
h*, r”, var(z)*}  is a feasible parameter solution, then {cg;,  . . . . cg;, Eh , f*,  c 1

. . . . gi,
var(z) }

is an equivalent parameter solution in terms of model fit (with c any arbitrary real value
unequal to zero). To solve this scaling or rotational problem, we have to introduce a
constraint. The options for doing so are to set either h = 1, gl = 1 or var(zl) = 1.
Compare Bijleveld and De Leeuw (199 1).

THE  CHOICE OF INITIAL STATE

We have assumed the value of the state at timepoint 0 to be zero for each observation
unit. In principle, it is possible to model zo as a model parameter, which can be
estimated along with the other parameters using the EM-algorithm. However, if one
would restrict the class of feasible models in the sense that the choice is made to center
the input and output variables to zero (that is: expectations are all zero), then zo has to
be equal to zero for each subject (proof by contradiction). The importance of a proper
choice for the values of zo depends on the value of f. The smaller f, the smaller the
impact of zo and the smaller the disturbance created by an improper choice of zu. Much
more can be said about the initial state, but this is outside the scope of this paper.

EXAMPLE USING REAL DATA

To illustrate our model, we have analysed a data set on the relationship between mood
and urge to smoke1  (Olmstead, 1996). Data had been gathered for 35 subjects on two
consecutive days. Approximately every 20 minutes, subjects had filled in a

.

1 The authors wish to thank dr. L. Jamner for his kind permission to use the data. Data collection had

been supported by a grant from the National Insti tute of Neurological  Disorders and Stroke Research

(grant no NS-34143) as well as by UC-TRDRP grant no lRT0205.

- 14-



dynamic analysis of multivariate data with nonlinear transformations

questionnaire, registering their mood states of the moment. They had also registered
their urge to smoke. As the data had been gathered over a period of two days, every
series contained at least one big gap (when the subjects were sleeping); however, many
series contained other smaller gaps as well (for instance when subjects were driving,
engaged in sports, in meetings etc.). For our purposes, we selected all uninterrupted
series that had at least 10 time points, retaining the first 10 time points of each. As such,
a number of subjects appear several times in the data set. A total number of 59 series
remained in this way.

The mood variables that had been measured were: energy, tiredness, anxiety,
hostility, happiness and sadness. The mood variables had been measured on 7 point
scales, ‘urge to smoke’ had been recorded on a 7 point scale as well. All variables were
moderately to heavily skewed.

We ran our model on this 59 x 7 x 10 dataset. To solve for indeterminacy of
solutions, h was fixed at 1. This choice was based on the considerations that the
dimensionality of h equalled  that of z, and that the envisaged Box-Cox transformation
gave subsequent liberty in the choice of transformation. We used Box-Cox
transformations for the input and output variables. The transformation functions were
assumed to be time-invariant. We gave all the Box-Cox parameters starting values equal
to one. This implies that y and rl are equal to each other in the first iteration step of the
EM-algorithm only.

The overall model fit can be assessed objectively using, amongst others, the
Goodness of Fit Index (GFI) and the Adjusted Goodness of Fit Index (AGFI) (cf.
Bollen  & Long, 1993). For calculating these values, we use the transformed input- and
output variables, which are normally distributed.

Table 1. Parameter Estimates, Variances and Box-Cox Parameters for Mood and Urge
to Smoke Data

Parameter

f

g energy
tiredness
anxiety
hostility
happiness
sadness

h

Value (Variance)

.49 C.18)

Box-Cox
Parameter Values

(-)

.9

.4
1 . 0
1 . 0
.6

1 . 0

.8

.

The algorithm converged rapidly to fit values of .95  (GFI) and .92  (AGFI), both of
which, being larger than .9,  are quite acceptable values. We also ran the algorithm
without the Box-Cox transformations (i.e. with all the Box-Cox parameters values
fixed at one). We used the loglikelihood ratio statistic to compare the model with
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transformed variables to the model without transformed variables. The value of this
loglikelihood ratio statistic turned out to be 17.9 with seven degrees of freedom, so that
we may conclude that the null hypothesis with all Box-Cox parameters equal to one can
be rejected on the basis of the data (5% significance level). Using the Box-Cox
transformation (or another non-linear transformation) therefore appears justified.

The parameter estimates, with variances given between brackets and Box-Cox
transformation parameters are given in Table 1. The algorithm converged to a
technically satisfactory solution for the linear dynamic system. The value of f is
between 0 and 1, indicating that a stable system has been modeled in which the values
of the latent state when unperturbed by outward influences converge to zero. The values
of the Box-Cox parameters show that for each timepoint the first, second and fifth input
variable are transformed non-linearly by the Box-Cox functions. The values of the
transformation furthermore show that the output variable ‘urge to smoke’ did indeed
behave nonlinearly.

Once the estimates of the model parameters have been computed, their variances
may be found from the information matrix. This is the matrix of second order
derivatives with respect to the unknown parameters of the loglikelihood function.

When we tested the hypothesis f = 0, the likelihood ratio statistic and the t-
statistic showed that f is significant on a 5% level. Thus, there is a significant impact of
the previous measurements on the present ones. Next, we tested the significance of
each of the six input variables, using loglikelihood ratio statistics and t-statistics for
each regression coefficient. From these tests, it emerged that the first, third, fourth and
sixth variable could be dropped out of the model (probability levels of O-7,0.8,0.7 and
1.0 respectively, and t-values smaller than 1.96). Only the second and fifth input
variable are relevant statistically speaking (with probability levels of 0.04 and 0.05
respectively and t-values larger than 1.96). Both of these variables had been
transformed nonlinearly as can be seen from the Box-Cox parameter values.

From the estimated parameter values one can deduce that tiredness and previous
urge to smoke are the most important predictors for urge to smoke. Happiness is a less
important predictor. Urge to smoke is high when subjects are tired, when their urge to
smoke was high at the previous time point, and (though less particularly so) when they
are happy. Energy, anxiety, hostility and sadness play hardly any role at all.

DISCUSSION

In the above, we presented an extension to the existing methodology for multivariate
panel data that is both useful and efficient. The model is useful as it can handle
situations with several subjects and more than just a few time points or waves. The
model can easily incorporate non-normal and ordinal output variables. An advantage of
our method over existing methodology for such data analytic situations, is that our
technique provides stability information on the parameter estimates. While this was not
presented in the example give above, the variances of the parameters estimates can be
used to compute confidence intervals, which may be even more easily interpretable. An
additional advantage, not immediately obvious from our formulas, is that it is not
necessary for all subjects to have series of equal length: Ti  f T. This means that
subjects who drop out of the study before the end of the longitudinal research phase can
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be incorporated in the analysis up to the last time point they participated. Dropout is one
of the most serious validity problems in longitudinal research, which becomes
progressively worse the longer the observation period and is a generally non-random
process. The possibility to retain subjects for as long as they partook in the study, is
thus a true advantage over techniques such as LISREL or MANOVA,  that need
complete series. Hierarchical models also allow subjects to have series of unequal
length. The type of temporal developments captured by our type of model is, however,
far more general than those featuring in hierarchical models, such as linear or quadratic.
A second advantage of our models over structural equations models, is that, whereas in
LISREL the inverse of a (kT+mT)  x (kT+mT) matrix has to be computed, in our
method the inverse has to be computed of one matrix that has dimensionality pT  x pT
and one matrix that has dimensional@ mT x mT.  This makes a considerable difference
in computing time, computer memory and precision.

From our admittedly limited experience thus far, our method appears to
converge swiftly. This is probably due to the bijection  between B8B’ and 8 on the one
hand and Q and Yen the other hand. Our method can be sped up even further if it can
be safely assumed that the variance covariance matrices of the error terms are equal not
only across subjects, but over time points as well. In that case, the mT x mT matrix Q
reduces to an m x m matrix, which considerably simplifies the inversion problem in
(8),  (9),  (lo), (11) and (12). We could also have used a step-function for non-linearly
transforming the output variables. However, this would have introduced many more
parameters to our model, and would thus have implied a less parsimoneous model.

All the model simplifications introduced in the course of this paper can be gotten
rid of again, if necessary. This will make the derivations, and computations, more
complicated. In that case, the algorithm will take longer to converge. However, given
our experiences thus far with exceptionally speedy convergence, we do not expect this
to prove a constraint of any practical relevance.

In our example, we fixed the value of h at 1 to solve the identification problem.
In general, fixing the variance of the latent state space values may be a more appropriate
policy, as it constitutes a fairly unequivocal choice, and is similar to other
standardizations in comparable data analytic situations (e.g. factor analysis).

For behavioral applications, it may be useful to be able to compare subjects with
respect to their latent state scores. Our technique does not produce such scores.
Following Oud et al. (1990) and Oud, van Leeuwe and Jansen (1993), latent state
scores may be found using the Kalman filter (Kalman, 1960). Assigning an arbitrary
starting value, values for the latent state scores can be computed using the transmission
parameters, expected values and (co)variances of the error terms. The Kalman filter is
known to become independent of the starting values after a very small number of time
points, in practice this may occur as swiftly as after three to five time points from to.

The practical relevance of our model will have to be tested by extensive
application on generated as well as empirical data. The addition of transformations for
mput  variables as well as categorical variables would further increase this relevance.
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