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Abstract

In this paper, we address the problem of maximizing expected return subject to a worst case
return constraint by composing a portfolio that may consist of cash, holdings in a stock market
index and options on the index. We derive properties of optimal and feasible portfolios and
present a linear programming model to solve the problem. The optimal portfolios have pay-off
functions that reflect a gambling policy. We show that optimal solutions to a large class of
portfolio models that maximize expected return subject to downside risk constraints are driven
by this casino effect and present tractable conditions under which it occurs in our model. We
propose to control the casino effect by using chance constraints. Using results from financial
theory we formulate an LP model that maximizes expected return subject to worst case return
constraints and chance constraints on achieving prespecified levels of return. The results are
illustrated with real life data on the S&P 500 index.



Introduction

In the asset management industry, the concept of guaranteed return products seems to become
more and more important. As at June 1996, the market value of mutual funds with a guar-
anteed minimum level of return, listed at European exchanges, was well beyond 120 billion
Deutschmark. Institutional investors and corporate treasuries also show a rapidly growing in-
terest in asset management styles with absolute return guarantees. In many cases this interest
is sparked by the need to have exposure to risky asset classes with high expected returns while
not being able to bear the risk of substantial losses in the short run. Even though specific
liability structures may call for well tuned investment policies, many professional investors have
a generic investment problem in common: to maximize expected return while limiting downside
risk. Traditionally this trade-off was reflected by the choice of asset mix. Nowadays, better
trade-offs can be achieved by the use of derivative financial instruments such as options.
In this paper, we suggest generalizations and improvements of Dert and Oldenkamp (1996) and
focus on the problem of determining an investment portfolio from a universe of assets that
consists of cash, a stock index and European, exchange listed options on the index that expire
at the investment horizon, such that:

l the expected return at the investment horizon is maximized, subject to

l the realized portfolio return at the horizon is no worse than the guaranteed return, inde-
pendent of the value of the index, and

l the probability that the portfolio return will exceed a given target return is sufficiently
large.

It is our experience that investors are very able to state their investment preferences in terms
of the framework of the above problem description. Although more complex utility functions
could also serve to reflect risk-return trade-offs, we feel that such an approach would relate less
well to the frame of reference of many investors in practice.
Whereas there is abundant literature on the trade-off between expected return and standard
deviation of return, initiated by Markowitz (1952), and the trade-off between expected return
and downside risk (Leibowitz and Henriksson (1989), H 1ar ow (1991), Leibowitz and Kogelman
(1991), Pellsser and Vorst (1995)), little has been published on the trade-off between expected
return and the level of guaranteed return, using derivative instruments. Pelsser and Vorst (1995)
concentrate on expected return maximization subject to shortfall risk constraints, by composing
portfolios consisting of stocks and European stock options. Their approach is based on the
assumption that the continuous version of the CAPM holds.

The remainder of this paper is organized as follows. First we discuss the problem without
chance constraints and derive necessary and sufficient conditions for feasibility and optimality
of solutions to this problem. The conditions can be formulated in such a way that it can easily be
verified whether they are met for given portfolios. They are derived without making assumptions
on the process that generates returns on the stock index. Using these conditions, we present
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an LP model to determine optimal portfolios, based on actual market prices, taking bid-offer
spreads into account explicitly.
In section 3, we discuss the casino effect, which can be shown to be a property of optimal solutions
to a large class of optimization models of which the model that we develop in this paper can
be seen as a special case. Many investors may perceive the casino effect as an undesirable
property of the pay-off functions of their portfolio. Therefore, we extend our model with chance
constraints that can be used to control the casino effect. To formulate the extended problem as
an LP model, we use a result from financial theory (Dybvig (1988)) that has been derived under
the assumption of lognormally distributed returns on the index.
The theoretical results are illustrated by numerical examples that use real-life market data of
options on the S&P 500 index, one of the leading stock market indices in the USA.

introduce some notation.

1 Notation and Assumptions

Before we discuss our model and solution procedure in more detail, we

l T: the investment horizon,

l S(t),t  E [O,T]: th e value of the index at time t (S refers to the i:
T, S(T), and F to its distribution function),

ndex value at the horizon

l n: the number of different exercise prices of options in our model,

0 K;,i=1,2 )..., n: the exercise price of the i-th  option, Kr  < . . . < K,,

0 p;,q,i= 1,2 ,...) n: the prices of European put and call options with exercise prices Ii-;,
respectively, expiring at the horizon T,

l a?a~i=l22) 27 I*--> n: the expected pay-offs of European put and call options with exercise
prices K;  , respectively, expiring at the horizon T,

l (d)+: the positive part of d, equalling max{d,  0},

0 Lx;, cc;,  i = 1,2,.  . .) n: the amount of put and call options in the portfolio,

l y: the number of units of the index in the portfolio,

l Z: the amount of money invested in the risk-free asset,

l r: the risk-free rate with maturity T,

l V(S;  z?‘,  zc, y, z): the pay-off or value of the portfolio consisting of y units of the index,
an investment in the risk-free asset of z and a portfolio (xP,  xc) of index options at the
horizon, as a function of the of the index level at the horizon, S,

l 0: the pay-off level to be guaranteed at the horizon.
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Furthermore, we will make the following assumptions:

l The index used in the model is a total return index, all dividends are immediately rein-
vested.

l We consider a single period problem, i.e. once the option portfolio is bought, it will be
held until the horizon.

l Instead of using returns, we will scale the initial value of the index to one dollar (so
S(0) = 1) and make use of portfolio pay-offs.

l The initial budget is equal to one dollar, so the amounts invested in the index, index
options and the risk-free asset sum up to one.

l There are no execution costs, other than the bid-offer spread.

2 Guaranteed and Expected Returns: Theory

In this section, we will analyze the trade-off between the guaranteed and expected pay-off in
theory. It should be noted that the optimization approach presented in the following sections
presumes the use of real-life options, with prices possibly deviating from their theoretical Black-
Scholes values. In the presence of theoretical option pricing, financially engineered guaranteed
return products, like PEN’s (Protected Equity Notes, which consist of a zero-coupon bond and
at the money call options), may be constructed. They have already been analyzed in some detail
in the literature (Merrill and Thorley (1996)).
In this section, we first introduce a general problem formulation. We subsequently derive nec-
essary and sufficient conditions for feasibility and optimality of a given portfolio. Based on
these conditions, we present a linear programming model to determine optimal portfolios of
zero-coupon bonds, a position in the underlying index and index options. Section 2.4 presents
a numerical illustration based on real-life data of the S&P 500 index.

2.1 A Conceptual Problem Formulation

Given the assumptions stated in section 1, we derive the following expression for the pay-off at
the horizon:

V(S;  xp, xc, y, 2) = ys + ZP + 2 { “;(A-;  - s)+ + x;(s - A-i)+} ) (1)
i=l

Notice that the pay-off function is linear in the portfolio holdings xp, xc, y and z. The objective
is to allocate a budget to the amount of 1 over a universe of assets so as to maximize the
expected pay-off of the portfolio, subject to the pay-off at the horizon, V(S;  xp, xc, y, z), always
being larger or equal to the guaranteed pay-off level. This is reflected by the following stochastic
programming problem:
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(P> max
~p,~=,Y,z

epTy + erTz + c2p’xp  + aC’xC (2)

p’xP+c’xC+y+z  2 1 , (3)
V(S;xP,xC,y,  z) 2 8, v’s > 0 (4)

xp, xc E R”, y, z E R.

For notational convenience, we have ignored bid-offer spreads in this formulation. They can
easily be incorporated in this model by introducing separate variables for short and long positions
of options. The numerical results in 2.4 and 3.2 have been obtained by a model that does take
bid-offer spreads into account. The stochastic nature of this problem is caused by the dependence
of the pay-off on the uncertain value S of the index at the horizon. From a computational point
of view, this model is rather unattractive because constraint (4) is one with infinite dimension.
In section 2.2, a finite set of constraints will be derived that can be used instead of constraint

(4).

2.2 Conditions for Feasibility

By assumption, all options expire at the horizon. It follows that the pay-off function of each
of the option series is a piecewise linear function of the index value at the horizon. As a
consequence, the pay-off function of any portfolio of such options is also piecewise linear in the
index value at the horizon. It is easy to verify that the breakpoints of the pay-off function
coincide with the excercise prices of the options in the portfolio. These observations enable one
to replace the infinitely dimensional constraint (4) by n + 2 1 inear constraints without affecting
the feasible region. For Kr  5 S 5 K,, it suffices to require the pay-off at all excercise prices
to be greater than or equal to the guaranteed level of pay-off. For S 2 K, and for S 5 Kr,
the pay-off function is linear in S. Thus, it takes only two additional constraints to ensure a
sufficient level of pay-off outside of the interval [Kr, Kn] as well. This insight is formalized in
the following lemma.

Lemma 2.1 Let (xp, xc,  y, z) be an optioned portfolio, satisfying the budget constraint (3).

Then, the portfolio is feasible to problem (P) if and only if

v(o;xp,xc,Y,~)  2 $7 (5)

V(K;; xp, xc, y, 2) 2 8, i = 1,2 ,..., n, (6)

2 x;+y 2 0.
i=l

(7)

PROOF: We begin by taking the derivative of the pay-off function V with respect to S in an
arbitrary point S # Ki, i = 1,2,.  . . , n:



V ’ ( S )  =  y  - &p, 0 < s < A-1,
i=l

= y - kxy  + y y;, K-1 < s < Kj,
i=j i=l

II

= YfC.+ K,  < s.
i=l

Note that this derivative is a constant between breakpoints, which implies that the pay-off

function is linear in between the breakpoints I<;.  As can easily be verified, V is continuous in

these breakpoints. Hence, if the guaranteed pay-off constraints are satisfied in S = 0 and in each
breakpoint, then the minimum pay-off requirement is also met V’s E [0, K,],  since the pay-off in

this interval is always a convex combination of the pay-off of two points in the set 0, Kr, . . . . K,.
Since V is linear in ,S’  for S 2 I<,, it is necessary and sufficient to require the derivative of V to

be nonnegative for S > K,,  given V(K,;  xp,  xc,  y,  z) > 0. q

Table 1:

Data for S&P 500 options (may 1997)

bid mid ask implied expected return (ask) return (bid)

S&P 500 760.48 760.48 760.48
call 740 27.63 28.12 28.52
call 750 20.50 21.00 21.50
call 760 14.25 14.62 15.00
call 770 9.50 9.75 10.00

call 780 5.63 5.88 6.13
call 790 3.00 3.19 3.38
call 800 1.50 1.69 1.88
put 740 6.50 6.69 6.88
put 750 9.25 9.50 9.75
put 760 13.25 13.42 13.62
put 770 18.00 18.38 18.75
put 780 23.75 24.25 24.75
put 790 31.25 31.75 32.25
put 800 39.63 40.13 40.63

19.4

18.7

17.7
17.2

16.5

15.8

15.6
19.6

18.8
18.2

17.5

16.6

16.3

16.1

765.32
28.24

21.37
15.57
10.90

7.31

4.69

2.88
5.34
8.46

12.67
17.99

24.41

31.79

39.97

.9868 1.0222

.9937 1.0423
1.0383 1.0930

1.0897 1.1471

1.1925 1.2984

1.3883 1.5642

1.5305 1.9282

.7760 .8214

.8681 .9150

.9303 .9563

.9597 .9996

.9861 1.0276
.9857 1.0172

.9831 1.0087
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2.3 A Tractable Model

Replacing inequality (4) by (5),  (6) and (7), we obtain the following linear programming (LP)
formulation for problem (P).

w max
XPJC,Y,Z

epTy + erT* + op’xp  + oc’2’ (8)

p’xp +  c’xC  + y +  z 5 1 , (9)

V(0;  xp, CY/,Z)  2 0, (10)

V(K;;  xp, xc,  y ,  z)  2 0, i= 1,2 )...)  72, (11)
y+l'xC  2 0 , (12)

xp, xc E R”, y, z E R.

An LP formulation in the variables xp,  xc, y and z can easily be obtained now by substituting the
explicit expression (1) for the pay-off function V into the problem above. This LP problem has
2n+2  free variables and n+ 3 inequality constraints. It can routinely be solved by standard LP
solvers. In section 2.4, we illustrate this approach by solving a specific instance of the problem
defined by market data of the Chicago Board Options Exchange.

pay-off

105.82

8 0
682.8 750

index value at horizon
803.1

Figure 1: The optimal pay-off function

2.4 An Example With the S&P 500 Index

We will report results based on market data of options on the S&P 500 index, that are listed
on the Chicago Board Options Exchange (CBOE). The prices are drawn from a Reuters screen
in the beginning of the afternoon of April 22, 1997. Table 1 contains the input to the LP
model. The horizon is equal to the expiration date of the options, which is May 15, 1997. The
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Table 2:
Optimal solution for various guaranteed levels

9 cash 800 call exp.  ret.

.90 89.67 5.495 5.81

.91 90.67 4.965 5.29

.92 91.66 4.435 4.76
.93 9 2 . 6 6 3.905 4.24
.94 9 3 . 6 6 3.375 3.71
.95 9 4 . 6 5 2.845 3.19
.96 9 5 . 6 5 2.315 2.66
.97 9 6 . 6 4 1.785 2.14
.98 9 7 . 6 4 1.255 1.61
.99 9 8 . 6 4 .725 1.09

1.00 99.63 .195 .56

investment horizon is 23 days. The value of the index at the beginning of this period was 760.48.
The present value of estimated dividends is 1.59 dollar.
The starting portfolio consists of 100 dollars cash. The expected pay-offs of the options have been
calculated under the assumption that the index value at the horizon is lognormally distributed
with an expected annualized growth rate of 10%  (excluding dividends, this corresponds to an
instantaneous growth rate of 7.9Y)0 and an annualized standard deviation of 17.9%,  which is in
conformity with the implied volatility of the at the money options in the universe (see table 1).
Note from table 1 that the expected pay-offs (in pay-off column) for the puts are always lower
than the premia, whereas for the calls, the opposite is true. This reflects the assumption that
there is a positive risk premium for the index in our model. We have assumed that one can
lend and borrow against an annualized short term interest rate of 5.51%, which corresponds to
a return at the investment horizon of 0.37%.
The optimal solutions for different values of the minimally required return are given in tabel 2.
It is easy to interpret the solutions: for example: in order to guarantee a pay-off of 90, 89.67
is invested in the risk-free asset in order to secure the minimally required pay-off of 90. The
remainder of budget can now be invested in the portfolio with the highest expected return,
provided that it can never generate a negative pay-off. In this example, this portfolio consists
of the call 800 only.
The optimal pay-off function corresponding to this solution is given in figure 1 (the straight
line corresponds to the pay-off of the underlying index). Since the optimal portfolio contains a
substantial position in out of the money calls, large gains will be realized if the index rises by
more than 5.2% (i.e. higher than 800). For index returns up to 5.2%,  however, the return on
the portfolio is always equal to the minimally required return of -10%.  This portfolio reflects
a gambling policy: receiving a very high return with small probability, and a low return with
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high probability. This phenomenon will be referred to as the casino eflect. For a more formal
definition of the casino effect, the reader is referred to definition A.1 in the appendix, which also
contains the derivation of necessary conditions for the casino effect.
For different levels of the guarantee 0,  the solutions look strikingly similar. The optimal option
portfolio always involves a long position in the risk-free asset, equal to the amount of the present
value of the minimally required pay-off, together with a long position in the calls 800. The size
of this latter position decreases linearly with the guaranteed pay-off level.

3 The Casino Effect

Table 3:
Optimal solutions with guarantee of -lo%, chance constraint at 0% level

unrestricted chance constraint
50% 70%

exp. return 5.81 % 1.77 % 0.63 %
cash 89.67 99.63 89.65

index 0.013
call 740 -0.013
call 800 5.495 1.889 0.238
put 740 0.500
put 760 -0.500

In the previous section, an example using options on the S&P 500 index illustrated an important
consequence of maximizing expected return subject to achieving an minimum level of return
under all circumstances: the optimal portfolios result in a probability distribution of pay-offs,
with a high probability of obtaining the minimally required pay-off and a small probability of a
very high pay-off.
The casino-effect is not a consequence of the way we specified our model. It can be shown that
it drives the optimal solution to a larger class of models where expected return maximization is
combined with downside risk minimization (the appendix contains a proof of this claim under
the assumption of complete markets). From the viewpoint of financial theory, this result may
not be surprising. However, since many investors may consider a portfolio with such a pay-off
function undesirable, we will suggest a model formulation that enables one to reduce the impact
of the casino effect in the optimal solution to the extent that one chooses. This introduces a
trade-off to be made by the investor: since the expected pay-off is maximized by casino type
pay-off functions, the casino effect can be reduced only at the cost of a lower expected return.
In the next section we extend the model with a chance constraint in order to control the casino
effect. The results of the alternative model are tested using the same example as in section 2.
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3.1 Adding a Shortfall Constraint

Since the casino effect is not a consequence of using LP models, but a consequence of inadequate
specification of investment preferences, the question is how investor preferences can be reflected
more accurately. Assuming that many investors dislike casino solutions because of the low
probability of achieving a satisfactory return, adding shortfall constraints is a natural way to
obtain a better specification of investor preferences (see Leibowitz and Henriksson (1989) for a
discussion on the use of shortfall constraints in asset allocation models).
We will extend the model by a chance constraint that requires the probability of a return less
than a prespecified threshold level to be a.cceptably  small. Here, we will only include a chance
constraint on one level of target return. The model, however, can trivially be generalized to
include several chance constraints.
Adding constraint (13) to problem (P) in 2.1:

Pr{V(S;  xp, xc, y, 2) I r> 5 u, (13)

reflects the requirement of achieving at least a return equal to y with a minimum probability
of u. Assuming lognormally distributed stock index returns, a decreasing state-price density
function (Dybvig (1988)) plim ies that pay-off patterns which are not monotonically increasing
in the index, are suboptimal. Using this property, we can reformulate the chance constraint:

Pr{V(S;  zp, xc, y, 2) 5 r} = Pr{S  2 V-‘(7; xp,  xc,  y, z)}

= Fyv-‘(7; xp,  xc,  y, z)).

Now, constraint (13) can be replaced by

qv-l (y; xp, xc, y, z) 5 u.

Again, applying transformations (by F-r and V, respectively) yields:

v(F-‘(u);  xp, xc, Y, 2) 2 7, (14

which is a linear constraint in xp,  xc, y and Z. Replacing constraint (11) in problem (P’) by
constraints (18) and (19)) ensures that pay-off functions of feasible portfolios have monotonic
pay-offs. In conjunction with (17) and (al), these constraints also ensure that the worst case
constraint is always met. Using (14) we now obtain the following LP model:

max (15)
~PFC,Y,Z

epLTy  + erT.z + crp’xp + crc’xc

p’xP  + c’xC  + y + z 5 1 , (16)

v(o;xp,xc,Y,z)  2 0, (17)
V(K1;  xp, xc, y, z) > V(0;  xp, xcy,  z), (18)

V(K;+l;xp,  xc,  y, z) > V(K;;xp,  xc,  y,  z), i = 1,2,.  . ., 72 - 1, (19)

vp-l (u); xp, xc, Y, 2) L 7, (20)
y+ixc 2 0 , (21)

xp,  xc E R”, y, z E R.
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pay-off

sl s2 780 800
index value at horizon

Figure 2: Comparison of pay-off functions

3.2 The S&P 500 Example Continued

In this section we will present computational results that have been obtained from applying the
model with a chance constraint (section 3.1) to the S&P 500 data that were presented in section
2.4.
Table 3 presents the solution to the problem that has been discussed in section 2.4, with the
additional requirement that the probability of a negative return (a pay-off less than 100) should
not exceed 0.5. In conjunction with the monotonicity requirement and the worst case constraint,
the chance constraint effectively turns the original worst case pay-off, never less than 90, into
a stepwise  linear minimum pay-off constraint: at least 90 for index values up to sl (see also
figure 2), here, sl is 763, and at least 100 for index values higher than or equal to sl. Although
adding a chance constraint should reduce the extent to which optimal pay-off functions reflect
the casino effect, one would still expect that solutions are driven by it. Therefore, it is not
surprising that the interpretation of the solution to the chance constrained problem is similar to
the one without a chance constraint: the 99.63 cash position with 0.5 puts 740 and -0.5 puts
760 constitute the cheapest portfolio that generates the minimally required pay-off. Notice that
this portfolio generates a stepwise linear pay-off that is almost identical to the minimum pay-off
function. Again, the remainder is invested call 800.
Different levels of the minimum probability of a positive return can lead to portfolios that differ
a lot, at least at first sight. Nevertheless the above interpretation to the solution seems to
remain valid. As an example, increasing the minimum probability of a positive return to 0.7
gives an optimal portfolio with a holding in the index and holdings in call options, without any
put options (see table 1). As can easily be verified, the pay-off equals 90 for an index value
equal to 0 and increases with increasing index values to become 100 at an index level of 740,
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exp. return %
6

4

2

0

0

probability level

Figure 3: Trading-off expected return, guarantee, 0% chance constraint

which is the index level as of which the pay-off has to be greater than or equal 100 (see s2 in
figure 2). The cash position in combination with the position in the index and the short position
in the call 740 guarantee a pay-off that is sufficient to meet the minimum pay-off requirements
at a purchasing price of 99.54. Although it may not be trivial to see, the universe of options
and their prices do not allow for composing cheaper portfolios that satisfy the minimum pay-off
requirements. The remainder of the budget, 0.46, is invested in the call 800.
Notice that imposing the chance constraints does affect the optimal objective funcition  value
substantially: the expected return decreases from 5.81% without a chance constraint to 1.77%
with the 0.5 minimum probability of a positive return and only 0.63% when this probability is
increased to 0.7. Figure 3 pictures the expected return of the optimal portfolio as a function of
the level of the worst case return and the minimum probability of a positive return. It provides
more insight in the trade-offs that can be made between expected return, the risk of a negative
return and the guaranteed downside protection.
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4 Summary

In this paper, we have analyzed the trade-off between the expected and guaranteed return
of a portfolio, using index options, by means of a linear programming model. The objective of
maximizing expected return subject to a minimum return level appeared to imply the optimality
of casino policies: the minimum return was achieved with high probability and a very high return
only with low probability.
Assuming complete markets, it was shown in the appendix that the casino-effect drives the
optimal solution to a large class of models in which expected return maximization is combined
with downside risk measures.
Theoretical Black-&holes assumptions imply that optimal pay-off functions increase monotoni-
cally in the underlying value. Using this property, we have presented an LP model that serves to
maximize the expected return of optioned  portfolios, subject to worst case constraints and short-
fall constraints. This model enables the investor to maximize expected returns whilst limiting
downside risk and controlling the casino effect.
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A Appendix

In this section, we will discuss some of the results and claims in the paper in more detail. The
first section contains the derivation of necessary conditions for the casino-effect. The second
section is devoted to our claim that the casino-effect is not necessarily restricted to the notion
of risk that is used in our model, but may be present in many other downside risk optimization
models as well.

A.1 Conditions for the Casino Effect

In the absence of transactions costs and/or bid-offer spreads, the put-call parity for non-dividend
paying options implies that we may either exclude the put or the call options from the model,
since either category can be replicated by a suitable portfolio of the underlying value, the risk-
free asset and a position in the other option type, provided there are no arbitrage opportunities.
Furthermore, we assume that in any optimal solution, the guaranteed pay-off requirement is
satisfied by an appropriate long position in the riskless asset, i.e. an amount of emrTO invested in
default-free zero coupon bonds with maturity T. In the absence of arbitrage opportunities, any
other portfolio satisfying the guaranteed pay-off requirements would require exactly the same
initial investment as in the case of a position solely in the risk-free asset.
Denoting the amount to be invested in the underlying asset by y and the additional investment
in the riskless  asset by .z (2 2 0), the LP problem of section 2.3 can be reformulated as follows.

rpz d’x + epLTy  + efT*

c’x+y+z = 1 - eerTO,
j-1

- C(Kj - K;)x.  - Kjy - ePTzz < 0- I j= 1,2,...,n
i=l

-L'X - y 5 0,

x E R’“,y E R,z E R+.

The casino effect, which was loosely defined in section 2.4, can now be formulated more formally
as follows:

Definition A.1 An optimal solution (x, y, z)  to the primal problem Q exhibits the casino-effect

the following conditions hold:

0 x; = 0, i = 1,2,.  . ., n - 1;

0 2, = ( 1 -  BemrT)c;‘;

0 y=o.,

In other words, the funds that remain after the guaranteed level has been attained, are used
to buy the call option with the highest exercise price, presumably the option with the highest
expected return. In the following theorem, we present necessary conditions for the casino effect.
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Theorem A.2 If the casino solution, corresponding to definition A.l, is optimal to problem Q,

then the following conditions must hold:

Aq+l - Aoj 5 (Acj+i - AcJ 2, i=2,3 ,...,  n - l ,

where Acj = cj - cj-1,  and CY~  = oj - cvj-1.

PROOF: The following proof is constructive and provides directions to derive a set of sufficient
conditions. In the proof, we concentrate on the linear programming complementary slackness
relations. The necessary conditions above will follow from dual feasibility in a straightforward
manner. The LP problem (Q)  has the following dual LP problem:

min (1 - emrT)P
P>YJl

j=i+l

n

p-- epTkyj  > erT,

j=l

(22)

i =  1,2,...,n (23)

(24)

(25)

Based on this dual and its corresponding primal problem (Q), the following equations are the
complementary slackness relations for joint optimality of a candidate primal and dual solution:

(

j - 1

yj C(Kj - I-,i,)x; - Kjy  - erT2 = 0,
i=l )

77  exi+y = 0,

i  )il

z P-erT(1+&7j)
(

= 0.
j=l )

j= 1,2,...,n (26)

(27)

(28)

Substituting the casino solution of definition A.1 into the complementary slackness relations,
we observe that any dual optimal solution has to satisfy 7 = 0 (the term in between brackets in
(27) is strictly positive). Omitting the 77 variable, the dual feasibility constraints (23), (24) and
(25) can be reduced to:
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Cip - 2 (Ii;- - ICi)yJ  = ai, i= 1,2,...,?2 (29)
j=i+l

p - K’y  = efiT, (30)
p - yerT > erT, (31)

/3 E R,yj  E R+.

The optimal value for p follows directly from (29), as all the ~j variables vanish for i = n:

From now on, we will assume that the exercise prices are equidistant, i.e. ICj - Kj-1, j=2,3,.  . . ,n,
is constant. Denote this constant distance by t. This assumption is only made to provide to

more insight, the proof can easily be adjusted for more general cases, as long as the exercise

prices are rational numbers. By consecutive subtracting of equations in (29),  we obtain:

This system of equations can be solved by applying backward induction. The optimal values for

rj satisfy

Yn  = 6 -’ (AcY, - WC,), (34

yj = t-1{(Acuj-A~uj+I)-/3(Acj-Acj+I)},  j=2,3,...,n-1. (35)

Using the nonnegativity of the dual variables -yj  gives the desired result, after the terms have
been rearranged. 0

The necessary conditions for the casino effect can be interpreted in the following way. The term

Ac~+~  - AC, corresponds to the initial costs of a butterfly option strategy, which is a well-known

option portfolio which creates a nonnegative pay-off function. Similarly, A~j+l  - Aolj  refers to

the expected gains of this position. Apparently, the profitability of all possible butterfly spreads

(measured as the expected gains divided by the costs) should be bounded by the expected return
on the call option with the highest exercise price for the casino-effect to hold. This expected

return equals the optimal value for ,6’  in the dual problem, as is shown by (32).

The conditions in theorem A.2 give us more insight into the forces that drive the casino ef-

fect .  The intuit ively appealing assumption that  al l  the remaining funds are spent to buy the

instrument with the highest expected return is just too simple if short-selling is allowed.
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.
A.2 Downside Risk Measures and the Casino Effect

To illustrate why the casino effect may be present in a more general class of downside risk
models, we will concentrate on a different problem formulation than the call option model
discussed in the previous section. Again, we look at a. one-period economy, where a given initial
budget of one dollar should be allocated such that a downside risk measure is minimized, given
a predefined expected return level. In contrast with the problems discussed before, we will
now restrict ourselves to a finite state space, such that there is a finite number n of possible
realizations of the index, which are all equally likely to occur. Markets are assumed to be
complete (for instance by assuming that there is a sufficient number of derivative assets traded,
see also Ingersoll (1987)), so there is a unique vector p with state prices pi,  i = 1,2,  . . . , n, which
prices all possible contingent claims in this economy.
As a consequence of the assumption of market completeness, the asset allocation problem now
reduces to allocating money to states of the world, instead of allocating funds to possible assets.
In the following analysis, the casino effect will show up in a somewhat different form: it relates
to pay-off patterns where all pay-offs above the threshold level that is used in the downside risk
measure are concentrated in a single state of the world. To analyze the casino effect, we will use
the following minimizing problem.

CR) (36)

c Pi&  I 1
i=l

n

(37)

(38)
i=l

vi+4 2 0, i =  1,2,...,n (39)

vi, 6; E R+.

In this model, (37) d fie nes the budget equation and (38) restricts the expected return of the
pay-off bundle. Equation (39) is necessary to define the deviations of the pay-off in a state below
the threshold level 8.  Without loss of generality, we will assume that the sequence of state prices
p;, i= 1,2 )...) n, is strictly decreasing. Given suitable choices for the threshold level 8 and the
expected return target r/,  there will always be compact feasible region, and, hence, an optimal
solution to problem (R). By applying straightforward exchange arguments, it is possible to show
that the optimal solution v* is an increasing sequence. The following theorem states the main
result of this section.

Theorem A.3 Suppose v* is an optimal solution to problem (R) and that the optimal objective
function value is strictly positive. Then at most one of the vi,  i = 1,2,.  . . , n, exceeds the

threshold level 0.

PROOF: Suppose there are at least two states where the pay-offs exceed the threshold level. By
monotonicity, it follows

0 < v;-I 5 v;.
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Now construct the following alternative solution w*:

 = VT, i =  1,2 ,..., n -2 ,

Wi = Vz-1  -E,

‘pi = v; + 6,

with 0 < t 5 $-I - 8. The 6’ remains unchanged. Obviously, w is still feasible to problem (R);

the budget constraint equation satisfies

kpiwi  = 5  Piwi + E(pn  - p,-1)  < kpiut.
i=l i=l i=l

Hence, v*  could not have been optimal to (R), which proves the theorem. cl
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