
» ^ 

ET 
Faculteit der Economische Wetenschappen en Econometrie 

05348 

Serie Research Memoranda 

Why Views Do Not Provide Logical Data Independence 

J.M. de Craaff 
R.J. Veldwijk and 
M. Boogaard 

Research Memorandum 1992-5 
maart 1992 

vrije Universiteit amsterdam 



» 



Why Views Do Not Provide Logical Data Independence 

J M de Graaff, R J Veldwijk and M Boogaard 

Most Information systerns are subject to changing requirements that can 
lead to alterations of the underlying database schema. Part of these 
alterations are information-preserving and can be regarded as schema 
restructuring. One of the objectives of the relational model is to 
provide logical data independence, i.e. to insulate appllcatlon 
programs from the effects of information-preserving changes to the 
database schema. It is claimed that the relational view mechanism is 
sufficiently powerful to achieve logical data independence. This paper 
argues that the relational view mechanism fails to fuifil these claims 
in both a theoretical and a practical sense. 

Key Words: Relational Model, Data Independence, View Mechanism, 
Maintenance 

1. Introduction 

In designing and building information systems it is necessary to 
design database schemata that are adequate representations of some 
Universe of Discourse (UoD). These schemata should capture the 
relevant rules, objects and object structure that apply to the 
environment to be modelled. For most, if not for all information 
systems, the UoD represented by the information system changes over 
time. Since the database schema has to remain an adequate 
representation of the UoD, changes in the UoD have to result in 
modifications of the database schema. However, schema modifications 
require time and money consuming changes to application programs that 
run against the schema. In order to avoid this application programs 
and terminal users should be independent of changes in the way data is 
structured and stored in the database. This quality is known as data 
independence. 
One of the main objectives claimed by the relational model is to 

offer this independence (see, e.g. Codd 1990). Within this model 
physical and logical data independence are distinguished. According to 
Codd (1990, p. 345) physical data independence means that "... 
application programs and terminal activities remain loglcally 
unimpaired when changes are made in storage representation, access 
method or both". 
Again according to Codd (1990, p. 346), logical data independence 

means that "... application programs and terminal activities remain 
loglcally unimpaired when information-preserving changes are made to 
the base tables . . .". This type of independence deals with changes at 
the relational level instead of changes below this level. We can 
define information-preserving changes as modifications of the database 
structure with no information explicitly supplied to or deleted from 
the database extension. In other words, information-preserving changes 
do not affect the information content of the database. Making 
information-preserving changes can be regarded as restructuring the 
database schema. 

1 



eturning to our discussion of schema changes induced by changes in 
the UoD rules, we contend that these never lead to changes at the 
physical level directly. Modifications at the physical level are 
typically induced by changes in the hardware configuration, in the 
cardinality of the base tables, or by changing priorities assigned to 
application programs. Adjustability below the relational level, i.e. 
physical data independence, is obviously very important with respect 
to the efficiënt allocation of scarce machine resources, but has no 
direct relationship with the state of the UoD. 
A similar look at the adjustability at the relational level, i.e. 

logical data independence, results in a picture that is not so clear. 
It is possible to conceive alterations of the database structure that 
do not reflect changes in the rules the database enforces. An example 
of such an alteration would be the partitioning of a table into two or 
more tables by rows using row content. Such an alteration would 
typically be effected for technical reasons. The really interesting 
aspect of logical data independence concerns support for schema 
changes that reflect changes in the rules pertinent to the UoD. An 
example of such a change would be the alteration of a one-to-many 
relationship between two tables into a many-to-many relationship. 
The claim of the relational model and relational DBMS products to 
provide physical data independence is largely achieved. In relational 
DBMS environments application programs are independent of many changes 
at the implementation level. With respect to logical data independence 
the relational model offers the view mechanism as a vehicle to make 
application programs immune to schema changes. Because implementation 
of the view mechanism in relational DBMS products is still very 
limited (see Date 1990, p. 383) these products do not offer any 
practical form of logical data independence. 
The question addressed by the present paper is whether the 

relational view mechanism is sufficiently powerful to offer logical 
data independence, especially with respect to information-preserving 
schema alterations induced by changes in the UoD (the interesting 
kind). With respect to this kind of changes we take the position that 
the view mechanism provided by the relational model does not provide 
the user with logical data independence at all. The paper attempts to 
show the validity of this position by means of both theoretical and 
pragmatic arguments. These arguments are applied to the latest version 
of the relational model as published by Codd (1990), rather than 
against some implementation of the model. 

The structure of this paper is as follows. Section 2 discusses some 
examples of information-preserving changes as given by Codd (1990) and 
shows that these examples have little or nothing to do with changes in 
the state of the UoD. Section 3 examines the view mechanism with 
respect to a basic UoD-induced information-preserving change to a 
database schema and shows that it does not work on both practical and 
theoretical grounds. Section 4 discusses one of the practical problems 
of the application of the view mechanism in more detail. Section 5 
confronts the ambitious claim that the view mechanism provides logical 
data independence with our equally strong claim that it does not. The 
paper ends with some suggestions aimed at developing a mechanism that 
does provide some form of logical data independence. 

2 



2. Exemplary Applications of the View Mechanism 

Views can be defined as virtual relations represented by their names 
and definitions only. By using views the users are insulated from the 
base relations. Some of the advantages of using views are that they 
allow the same data to be seen by different users in different ways 
and that they provide a powerful authorization mechanism. However, the 
most important feature of views is to provide logical data 
independence. To quote Codd (1990, p.322): "... application programs 
and terminal users should always use views as the means of interacting 
with a relational database - the only way now known for application 
programs and end users to be able to cope with many kinds of changes 
in the logical database design without the need for reprogramming and 
retraining. This is also known as logical data independence". 
In discussing the subject of logical data independence Codd (1990, 

ch. 20) provides three examples of information-preserving changes in 
which views should be used to provide logical data independence. These 
examples are listed below. 

1. Partitioning a table into two or more tables by rows using row 
content. 

2. Splitting a table into two or more tables by columns using column 
names, provided the original primary key is preserved in each 
result. 

3. Combining two tables into one by meaning of a non-loss join. 

Although Codd does not give a detailed description of the application 
of the view mechanism with respect to these examples, it is easy to 
conceive the view definitions necessary to represent the situation as 
it was before the information-preserving change. The question is, 
however, whether these changes are reflections of changes in the UoD. 
Looking at the first example in which an table is partitioned 

horizontally, we find that the obvious reason to make this change is a 
physical one, e.g. to store the different parts of the table on 
different devices or different locations. In this example the UNION 
operator makes it possible to combine the two new tables into one view 
that represents the situation before the change to the database 
schema. Of course it is essential that the view is updatable. Because 
Codd's new specification of the relational model provides a feature 
that determines in which base relation an insertion of a new tuple 
should be made (1990, p. 313), the UNION-view is indeed updatable. 
Although the view mechanism provides logical data independence 

according the definition given by Codd, the example does not represent 
a case in which any change in UoD-rules has occurred. Instead it 
demonstrates the applicability of the view mechanism to insulate the 
application programs from changes induced by physical considerations. 
To end our discussion of Codd's first example, it should be noted 

that this information-preserving change (and the one described in 
Codd's second example) allow the database to contain data that the 
original database structure prohibited. Specifically, it is possible 
that tuples with the same values for the primary key columns occur in 
more than one of the partitioned relations. Therefore, constraints 
need to be defined to restrict the allowed contents of the database in 

3 



accordance with the constraints implicitly enforced by the original 
schema1 (see Veldwijk et al, 1991b). 

Codd's second example concerns the replacement of an table by two or 
more projections that all inherit the primary key of the original 
relation but are otherwise disjunct. Provided no changes are made to 
the primary keys of the new tables, these alterations will be effectèd 
for the same kind of technical reasons mentioned in our discussion of 
Codd's first example. Thus, the same considerations as mentioned for 
this example are valid. 

Codd's third example deals with combining two tables into one by means 
of a non-loss join. Because several kinds of non-loss joins are 
feasible it is unfortunate that Codd is not any more specific. 
Although in certain situations this alteration could represent a 
changing rule in the UoD, in practice the most obvious reason for this 
non-loss join would be to reverse the alteration as described in the 
second example or to denormalize a relation for performance reasons. 
It is clear that these reasons are also of a technical nature and are 
not induced by changes in the UoD. 

In conclusion, the examples given by Codd do not represent 
information-preserving changes due to alterations in the UoD. They 
only demons trate the f act that views provide a kind of extended 
physical data independence. 

3. The View Mechanism and Changes in the Universe of Discourse 

This section deals with an information-preserving schema change that 
is unmistakably caused by a change in the rules of the UoD the 
database schema reflects. The example is a very basic one which has 
been discussed before by Date (1986, ch. 19). It concerns a database 
containing information on employees and the departments they work for. 
Every employee works for exactly one department (one-to-many 
relationship) and each attribute is mandatory (not null). The 
normalized database schema is displayed in figure 1. v 

Theoretically, the information-preserving change could be 
induced by the wish to drop these constraints. If so, the 
example would indeed reflect a change in the UoD. 



(DEPCODE. DEPNAME) 

(EMPCODE. EMPNAHE. DEPCODE) 

DEPT (DEPCODE. DEPNAME) 

(EMPCODE. EMPNAHE. DEPCODE) 

A 

(DEPCODE. DEPNAME) 

(EMPCODE. EMPNAHE. DEPCODE) EMP 

(DEPCODE. DEPNAME) 

(EMPCODE. EMPNAHE. DEPCODE) 

(DEPCODE. DEPNAME) 

(EMPCODE. EMPNAHE. DEPCODE) 

Figure 1. Normalized database schema for the employee database 

In this figure, the primary key of each relation is underlined. The 
arrows represent foreign key to primary key references between the 
relations. During the design process the database designer could pay 
attention to the eventuality of changing requirements in time. For 
instance, the constraint that any employee must work for exactly one 
department might be relaxed. Because this constraint is enforced by 
the schema of figure 1 such a constraint relaxation leads to a 
different database schema in which a many-to-many relationship between 
employees and departments occurs. 
In order to prepare for the structural rearrangements, the database 

designer is supposed to apply the view mechanism. In theory there are 
two possible approaches to use views in this situation. One is to have 
the views reflect the situation of figure 1 while the base tables 
reflect the many-to-many database structure. In the second approach 
the situation is reversed: the base tables reflect the situation of 
figure 1 while the views reflect the many-to-many database structure. 
We shall describe both approaches and we shall demonstrate that both 
fail to provide immunity from changes to the schema. 

Figure 2 depicts the first approach in which the views reflect the 
restricted (one-to-many) state of the UoD. The view V_DEPT is a one-
to-one representation of the base table B_DEPT. 

Base table structure: relaxed situation View structure: restricted situation 

B_DEPT (DEPCODE. DEPNAME) V_DEPT (DEPCODE. DEPNAME) 

A 

| 

A 

1 
B ASGN (DEPCODE. EMPCODE) V_EMP (EMPCODE. EMPNAME. DEPCODE) 

1 
• < :reate view V_I 

-ol ar-t- c cuDrnr 
EMP as 
\c c CUDUAUC A ncDrmp 

B_EMP (EMPCODE. EMPNAME) from B_EMP E, B_ASGN A 
(jharo C CUDfYYlC - A PMDPnnC 

Figure 2. First approach: base tables many-to-many, views one-to-many 

As will be obvious, this application of the view mechanism solves 
nothing because the application programs that run against the two 
views must be rewritten if the state of the UoD represented by the 
base-table structure ever becomes real. Because the application 

5 



programs are not immune to information-preserving schema changes 
logical data independence is not achieved. This observation lends 
itself to generalization too: every application of the view mechanism 
that is more restrictive than the base table structure on which the 
views are defined fails to provide immunity from certain information-
preserving schema changes. 

Base table structure: restricted situation View structur* s: relaxed situation 

(DEPCODE. DEPNAME) 

(DEPCODE. EMPNAME) 
create view V ASG as 
select DEPCODE, EMPNAME 
from B_EMP 

(EMPCODE. EMPNAME) 
create view V EMP as 
select EMPCODE, EMPNAME 
from B EMP 

B_DEPT (DEPCODE. DEPNAME) V_DEPT 

s: relaxed situation 

(DEPCODE. DEPNAME) 

(DEPCODE. EMPNAME) 
create view V ASG as 
select DEPCODE, EMPNAME 
from B_EMP 

(EMPCODE. EMPNAME) 
create view V EMP as 
select EMPCODE, EMPNAME 
from B EMP 

A 

I 
A 

1 

s: relaxed situation 

(DEPCODE. DEPNAME) 

(DEPCODE. EMPNAME) 
create view V ASG as 
select DEPCODE, EMPNAME 
from B_EMP 

(EMPCODE. EMPNAME) 
create view V EMP as 
select EMPCODE, EMPNAME 
from B EMP 

B_EMP (EMPCODE. EMPNAME. DEPCODE) V_ASG 

s: relaxed situation 

(DEPCODE. DEPNAME) 

(DEPCODE. EMPNAME) 
create view V ASG as 
select DEPCODE, EMPNAME 
from B_EMP 

(EMPCODE. EMPNAME) 
create view V EMP as 
select EMPCODE, EMPNAME 
from B EMP 

T 

s: relaxed situation 

(DEPCODE. DEPNAME) 

(DEPCODE. EMPNAME) 
create view V ASG as 
select DEPCODE, EMPNAME 
from B_EMP 

(EMPCODE. EMPNAME) 
create view V EMP as 
select EMPCODE, EMPNAME 
from B EMP 

V_EMP 

s: relaxed situation 

(DEPCODE. DEPNAME) 

(DEPCODE. EMPNAME) 
create view V ASG as 
select DEPCODE, EMPNAME 
from B_EMP 

(EMPCODE. EMPNAME) 
create view V EMP as 
select EMPCODE, EMPNAME 
from B EMP 

s: relaxed situation 

(DEPCODE. DEPNAME) 

(DEPCODE. EMPNAME) 
create view V ASG as 
select DEPCODE, EMPNAME 
from B_EMP 

(EMPCODE. EMPNAME) 
create view V EMP as 
select EMPCODE, EMPNAME 
from B EMP 

Figure 3. Second approach: base tables one-to-many, views many-to-many 

The second design option, depicted in figure 3, seems much more 
promising at first. Here the views reflect the relaxed (many-to-many) 
situation, while the base tables reflect the restricted (one-to-many) 
situation. In this approach the schema alterations that are foreseen 
do not affect the application programs since these were designed to 
operate on a database structure reflecting a many-to-many 
relationship. Changes occur only in the structure of the base tables 
and in the view definitions. To be specific: the base table B_EMP is 
replaced by two projections that conform fully to the definitions of 
the projection views V_EMP and V_ASGN. These views V_EMP and V_ASGN 
become copies of the new base tables B_EMP and B_ASGN, just like 
V_DEPT is a copy of B_DEPT. 
Unfortunately there are certain problems attached to this approach. 

First, it leads to an increase in programming effort because extra 
joins are necessary. The progranmers find themselves in a situation in 
which they have to create complex DML-statements that the view 
translation algorithm has to translate into simpler ones. Second, 
information-preserving changes like the one in the example are often 
accompanied by changes in the user-interface. If screen and print lay 
outs have to be adjusted anyway, the view mechanism alone cannot 
provide f uil immunity from application program changes. Third, the 
database structure quickly becomes unintelligible for all those who 
have knowledge about the real state of the UoD, because the UoD 
suggested by the schema does not correspond to the UoD as it is known. 
Both these observations lead to the conclusion that application of the 
view mechanism to obtain logical data independence is not without a 
price. 
Third, and all important is the fact that the views V_EMP and V_ASGN 

are non-updatable according to the powerful view updating algorithm 

6 



developed by Codd (1990, ch. 17). To demonstrate this we must first 
examine how the addition of a new employee must be translated from the 
view level to the base table level. 

Suppose employee 'Smith' with code 'E4' working for the existing 
department 'D2' is inserted into the database. At the view level this 
requires a transaction consisting of two insert operations: 

1) insert into V_EMP (EMPCODE, EMPNAME) values ('E4', 'Smith') 

2) insert into V_ASGN (DEPCODE, EMPCODE) values ('D2\ 'E4') 

The view updatability mechanism must translate these statements into 
equivalent statements on the base table B_EMP: 

1) insert into B_EMP (EMPCODE, EMPNAME) values ('E4', 'Smith') 

2) update B_EMP set DEPCODE = 'D2' where EMPCODE - 'E4' 

Although both single operations temporarily violate the integrity 
constraint that each property of B_EMP is mandatory, the transaction 
as a whole does not. However, the second insert must be translated 
into an update operation on the underlying base table B_EMP 
(irrespective of sequence). 
If we apply Codd's powerful view updatability (VU) algorithm2 to the 

example, we instantly run into difficulties because transformations of 
relational operators (like 'insert') into different relational 
operators (like 'update') are categorically forbidden by one of the 
basic assumptions underlying Codd's VU algorithm (1990, p. 298). 
Provided the VU-algorithm determines the views V_EMP and V_ASGN to be 
updatable3, the two insert operations on the views will both be 
translated into insert operations on the base table B_EMP. Because 
both inserted tuples have the same value 'E4' for their primary key 
attribute EMPCODE the transaction will fail. To conclude, the views 
V_EMP and V_ASGN are not fully updatable and support for logical data 
independence, if practical, is found to be very problematic if judged 
by the VU-algorithm. 

2 Although Codd's paper discusses two view updatability 
algorithms, namely VU-1 and VU-2, the differences between these 
algorithms are not relevant to the discussion in this paper. 
Therefore, the term VU-algorithm is used without qualification. 

3 In fact, the VU-algorithm will determine that insert operations 
are not allowed on the views because both lack a column that is 
mandatory in the underlying base table. The update and delete 
operators can be applied to the views. If the columns EMPNAME 
and DEPCODE were not mandatory the views would accept the 
insert operator. 

7 



4. Practical Problems 

The previous section has shown that, in case of a common information 
preserving change, views cannot provide logical data independence 
because they suffer from updatability problems. But even if we presume 
that a VU-algorithm can be developed that is powerful enough to handle 
all possible information preserving changes the application of the 
view mechanism is still accompanied with major practical problems. One 
of the most important problems is the extra programming effort 
required. 

Suppose the UoD as described in section 3 is a little bit more 
complicated. The database representing this UoD not only contains 
information about the department an employee works for, but also 
information about his salary and his working hours and information 
about his job. The normalized structure of this database is depicted 
in figure 4. 

(DEPCODE. DEPNAME) 

(EHPCOPE. EMPNAME, W-HOURS, SAL, JOBCODE, DEPCODE) 

(JOBCODE. JOBNAME) 

Figure 4. Normalized database structure 

In order to attain a stable database, one has to consider what changes 
might appear. Suppose that for the above database one can conceive two 
possible changes. The first one is that the one-to-many relationship 
between departments and employees changes into a many-to-many 
relationship. The second one is that the information about the salary 
of an employee becomes historical. The view structure necessary to 
represent this relaxed situation in the UoD is displayed in figure 5*. 
In this figure the columns W_HOURS and JOBCODE are transferred from 
V_EMP to V_ASGN because this information is necessary for each 
department an employee works for. Furthermore the column TIME_STAMP is 

Note that the views suffer from the same updatability problems 
as dicussed in section 3. 

8 

B DEPT 

B EMP 

B JOB 



added to represent the history of the salary of an employee5. An 
implementation dependent expression, namely the ORACLE system date 
SYSDATE, is used to assign a value to TIME_STAMP. Views V_DEPT and 
V_JOB are one-to-one representations of the base tables B_DEPT and 
B JOB. 

V DEPT 

V JOB V ASGN 

(JOBCODE. JOBNAME) 

V EMP 

V SAL 

(DEPCODE. DEPNAME) 

(DEPCOOE. EHPCODE. W_HOURS, JOBCODE) 
create view V_ASGN as 
select DEPCODE, EMPCODE, U HOURS, JOBCODE 
from B EMP 

(EHPCODE. EMPNAME) 
create view VJEMP as 
select EMPCODE, EMPNAME 
from B EMP 

(EMPCODE. TIME STAMP. SAL) 
c rea te view V SAL (EMPCODE, TIME STAMP, SAL) 
se lec t EMPCOOË, SYSDATE, SAL 
from B EMP 

Figure 5. Views to simulate the possible UoD situation 

In order to examine the practical consequenses of this approach for 
the application programs, we will examine a simple Information 
request. Consider for example the question: " Retrieve the name, the 
department name and the jobname of all employees with a current salary 
that exceeds 50.000." The query necessary to retrieve this information 
from the restricted structure is as follows: 

select EMPNAME, DEPNAME, JOBNAME 
from B_DEPT D, B_EMP E, B_JOB J 
where D.DEOCODE = E.DEPCODE 
and E.JOBCODE - J.JOBCODE 
and SAL > 50000 

The query necessary to retrieve the same information from the views 
representing the relaxed situation is as follows (overleaf): 

It can be argued that adding a column TIME_STAMP is no 
information preserving change. An answer to this objection is 
that each relation in a database has a virtual attribute TIME-
STAMP with a value that represents the present. In otehr words 
the common change of making information historical can be 
regarded as information-preserving. 

\ 



select DEPNAME, EMPNAME, JOBNAME 
from B_DEPARTMENT D, ASSIGNMENT A, B_EMPLOYEE E, B_JOB J 
where D.DEPCODE - A.DEPCODE 
and A.EMPCODE - E.EMPGODE 
and A.JOBCODE = J.JOBCODE 
and 50000 < 

(select SALARY 
from SALARY SI 
where S1.EMPC0DE = E.EMPCODE 
and TIME_STAMP -

(select MAX(TIME_STAMP) 
from SALARY S2 
where S1.EMPC0DE - S2.EMPCODE)) 

In the query based on the view structure it is necessary to execute 
five joins as compared with the two joins necessary for the normalized 
database structure. This means that programmers have to create 
complicated statements that are translated into simpler ones by the 
view translation algorithm. In other words, even for a small UoD with 
two simple possible changes the application of the view mechanism 
requires substantially more programming effort as compared with a 
restricted database structure. If one imagines a much more complicated 
UoD it is clear that the utilization of views to achieve logical data 
independence is highly unpractical and requires major investments in 
the development phase of the information system. The relevance of this 
matter even increases if one considers the f act that it is not sure 
whether the anticipated changes will ever occur or whether the changes 
that will occur are anticipated. 

5. Confronting the Claims 

It is possible to raise objections against our claim that the view 
mechanism does not support logical data independence. One objection 
could be that our criticism is only directed against Codd's present 
VU-algorithm, which could someday be sufficiently enhanced. Another 
objection could be that we have given only one example of a situation 
in which the view mechanism fails to provide logical data 
independence, which is f ar from proving that the view mechanism does 
not provide any support for logical data independence. 

Our answer to the first objection is that Codd has specified the 
assumption that relational operations on views may not be translated 
into different operations on base tables for a good reason, i.e. to 
make the updating of views comprehensible for the users (1990, p.298). 
If the assumption were dropped and the VU-algorithm were made 
sufficiently powerful to overcome its present limitations, the effects 
of view updating would quickly become unpredictable by database 
administrators. As a consequence the view mechanism would only be 
applied reluctantly for f ear of unexpected consequences. A second 
answer to the objection is that it will probably prove to be very hard 
or even impossible to come up with a sufficiently powerful extended 
VU-algorithm. For one thing, the algorithm should be able to evaluate 

10 



any number of view update statements in one transaction and translate 
these into a number of different update statements on the underlying 
base tables. As a third and final answer, we feel that whoever makes a 
claim should either fully prove it or make clear to what extent the 
claim holds. To be specific, any partial refutation of the claim that 
views provide logical data independence should either lead to a 
stronger VU-algorithm or to a clear and reliable redefinition of the 
concept of logical data independence6. 

The objection that we have only given one example of the failure of 
views to provide immunity to information-preserving changes can be 
answered in several ways. First of all, our last answer to the 
preceding objection is also an answer to this one. A second answer 
would be that failure to support the common information-preserving 
schema alteration we have discussed would severely limit the practical 
applicability of the view mechanism. As a third answer we can observe 
that limited view updatability reduces the understandability and 
reliability of the view mechanism. This argument reflects the same 
philosophy lying behind Godd's assumption that update operations on 
views may not be translated into different update operations on base 
tables. As a fourth and final answer, we have found it very hard to 
find non-trivial information-preserving schema alterations that do not 
offer the kind of view update problems described in section 3. 

6. Alternatives for the View Mechanism 

The discussion of the preceding sections shows that the fundamental 
question is whether or not it is possible to offer logical data 
independence without limitations, i.e. to find some mechanism that 
makes it possible to accept any kind of information-preserving change 
to a database schema without requiring changes to application 
programs. Such a facility would remain extremely desirable, even 
considering the observation of section 3 that information-preserving 
changes are often accompanied by changes in the information system's 
user interface. 
Without pretending that we can offer anything like the ultimate 

solution we can distinguish two alternative approaches that can lead 
to a level of logical data independence that is at least practical in 
the sense that it supports the most common schema changes. 

The least ambitious approach would be to enumerate a limited number of 
commonly occurring information-preserving schema alterations. For each 

In f act, Codd provides a more precise definition of the term 
'logical data independence' (1990, p. 346) by restricting it to 
information-preserving changes supported by his algorithm VU-1 
or by a stronger algorithm. This definition of the term only 
specifies a lower limit of logical data independence. Moreover, 
if the added restriction were to rule out the vast majority of 
information-preserving schema changes, the definition itself 
would become questionable. 

11 



kind of alteration an algorithm would have to be developed that makes 
it possible to modify both data structures and application programs. 
This implies that the application programs would have to be changed 
but these changes would be executed automatically. This would amount 
to a kind of surrogate logical data independence. View updating 
problems do not occur because no views are involved. The main 
limitation is that solutions like this, which have been described by 
Shneiderman and Thomas (1982) and by Veldwijk et al (1991a), provide 
at best a pragmatic solution but never one that is applicable to all 
relevant schema changes. 

A very ambitious approach would be to develop a data model on top of 
the relational model which would deal with information-preserving 
schema changes in the same way in which the relational model deals 
with alterations at the physical level (see Boogaard et al, 1991). 
Such a model should offer even higher level data structures to its 
users. What such model should look like is hard to teil, although it 
is obvious that lts highest level data structures may not reflect any 
UoD rule that is liable to change. The development of such a model may 
very well prove to be a mirage, if only because the number of 
conceivable information-preserving schema alterations is huge, unlike 
the number of possible alterations at the physical level. 
Nevertheless, it may be possible to develop a model in which a limited 
number of commonly occurring information-preserving schema alterations 
is made transparent. With respect to logical data independence, 
however, this would greatly reduce the ambition level of the approach. 

In conclusion, -we would like to draw attention to the f act that over 
twenty years after the introduction of the relational model, adequate 
support for logical data independence is still not in sight. Because 
of the huge beneficial effects this support would have on the 
maintenance costs of today's many relational information systems, 
relational DBMS vendors and users have every incentive to be 
interested in the outcome of any research in this area. 

ACKNOWLEDGEMENT 
The authors would like to thank dr. Edu Spoor for his comments on 
earlier verslons of this paper. 

12 



REFERENCES 

Boogaard M, Dijk, van M V, Spoor E R K and Veldwijk R J (1991), 
"Inherently Flexible Information Systems", in: Proceedings of the 
first STINFON Conference, Nijmegen, The Netherlands, December 1991. 

Codd E F (1990), The Relational Model for Database Management, Version 
2 Reading, Massachusetts: Addison-Wesley Publishing Company. 

Date C J (1986), "Updating Views" in Relational Database, Selected 
Writings Reading, Massachusetts: Addison-Wesley Publishing Company. 

Date C J (1990), An Introduction to Database Systems: Volume I, 5th 
edition, Reading, Massachusetts: Addison-Wesley Publishing Company. 

Shneiderman B and Thomas 6 (1982), "An Architecture for Automatic 
Relational Database System Conversion", in: ACM Transactions on 
Database Systems, 7, 2, pp. 235-257. 

Veldwijk R J, Boogaard M, Dijk M V van and Spoor E R K (1991a), 
"EDSOs, Implosion and Explosion: Concepts to Automate Part of 
Application Maintenance of Relational Databases", in: Information and 
Software Technology, 33, 5, pp. 343-350. 

Veldwijk R J, Spoor E R K, Boogaard M and Dijk M V van (1991b), "On 
the Expressive Power of the Relational Model, a Database Designers 
Point of View", in: Proceedings of the 12th International Conference 
on Information Systems, New York, December 1991. 

^ 

13 



The MESDAG Research Group 

INTRODUCTION 

The MESDAG project is a joint project endorsed by three 
organizations in the Netherlands: the N.V. Nederlandse 
Spoorwegen (The Netherlands Railways Company), RAET N.V. and 
the Vrije Universiteit of Amsterdam. The MESDAG project 
originated at RAET N.V. during the second half of 1989 as an 
outgrowth of research done in the field of active data 
dictionary models. This research and a prototype of an active 
data dictionary fora the basis for the mission of the MESDAG 
project that officially started its activities in September 
1990. 

MESDAG is an abbreviation of: 

MEta Systems Design And Generation 

MISSION AND OBJECTIVES 

The mission of the MESDAG project is to prove the feasibility 
of developing inherently flexible information systems by 
introducing higher levels of logical data independence. 

Derived from this mission following are the two main 
obj ectives: 

1. Examine the feasibility and initiate the development of an 
active, self-referential data dictionary model in which both 
a description of the database data and a description of all 
specifiable application design data can be stored. This data 
dictionary model should contain sufficiënt semantic aspects 
(like domains, constraints and time aspects) to assure the 
integrity, consistency and validity of the stored (meta) 
data, to avoid maintenance and to support query-formulation 
independent of current database structure. 

2. Examine the feasibility and initiate the development of the 
possibilities of data dictionaries in general and the 
described data dictionary in specific. This analysis of 
possibilities is directed at the embedding in and developing 
methods, techniques, methodologie guidelines and automated 
tools for the design, implementation and maintenance of 
flexible information systems. 

14 



The MESDAG Research Group 

MEMBERS OF THE MESDAG RESEARCH GROUP 

1. Dr. E.R.K. Spoor 
Dr. E.R.K. Spoor is associate professor at the Vrije Universiteit 
Amsterdam. He teaches and consults in the area of database systems and 
database development with a focus on the use of these technologies in 
organizations. His eighteen years of experience with computer 
technology includes eight years with NCR and six years with the Vrije 
Universiteit, first as a systems engineer and later as a computer 
scientist. He is one of the founders and board members of two 
automation oriented organizations: PSB (Amsterdam) and VDA 
(Hilversum). 

2. Drs. R.J. Veldwijk 
Drs. R.J. Veldwijk graduated from the Vrije Universiteit Amsterdam in 
1986. In his quality as consultant at RAET N.V. Utrecht, he is among 
others responsible for the design and implementation of advanced 
database architectures. His main interest lies in developing and 
implementing self-knowledgeable database models, aimed at reducing 
maintenance costs and at improving the accessibility of databases by 
end-users. Furthermore he teaches courses in data modelling. 

3. Drs. M. Boogaard 
Drs. M. Boogaard is assistant researcher at the Vrije Universiteit 
Amsterdam. Furthermore, he is part-time involved in projects by the 
Netherlands Railways Company. He graduated from the Vrije Universiteit 
Amsterdam, in August 1990. The objective of his research is to develop 
an approach to achieve higher levels of logical data independence for 
both end-users and application programs and to analyze the 
consequences of the level of logical data independence accomplished on 
the system development life cycle in general and on software 
maintenance and database inquiry in particular. 

4. J.M. de Graaff 
J.M. de Graaf f has been attached to the MESDAG research group as a 
trainee in the period from September 1991 till March 1992. He has 
planned to graduate from the Vrije Universiteit Amsterdam, in 
July/August 1992. 

ACCOMMODATION ADDRESS 

Vrije Universiteit 
Faculteit Economie 6e Econometrie 
Vakgroep BIK 
De Boelelaan 1105 
1081 HV Amsterdam Phone: +31-20-548708 
The Netherlands Fax : +31-20-6462645 

15 



1991-1 N.M. van Dijk On the Effect of Small Loss Probabilities in Input/Output Transmis-
sion Delay Systems 

1991-2 N.M. van Dijk Letters to the Editor: On a Simple Proof of Uniformization for 
Continious and Discrete-State Continious-Time Markov Chains 

1991-3 N.M. van Dijk An Error Bound for Approximating Discrete Time Servicing 
P.G. Taylor by a Processor Sharing Modification 

1991-4 W. Henderson Insensitivity in Discrete Time Generalized Semi-Markov 
C.E.M. Pearce Processes 
P.G. Taylor 
N.M. van Dijk 

1991-5 N.M. van Dijk On Error Bound Analysis for Transient Continuous-Time 

Markov Reward Structures 

1991-6 N.M. van Dijk On Uniformization for Nonhomogeneous Markov Chains 

1991-7 N.M. van Dijk Product Forms for Metropolitan Area Networks 

1991-8 N.M. van Dijk A Product Form Extension for Discrete-Time Communica-

tion Protocols 

1991-9 N.M. van Dijk A Note on Monotonicity in Multicasting 

1991-10 N.M. van Dijk An Exact Solution for a Finite Slotted Server Model 

1991-11 N.M. van Dijk On Product Form Approximations for Communication Networks with 

Losses: Error Bounds 

1991-12 N.M. van Dijk Simple Performability Bounds for Communication Networks 

1991-13 N.M. van Dijk Product Forms for Queueing Networks with Limited Clusters 

1991-14 FA.G. den Butter Technische Ontwikkeling, Groei en Arbeidsproduktiviteit 
1991-15 J.C J.M. van den Operationalizing Sustainable Development: Dynamic 

Bergh, P. Nijkamp Economic-Ecological Models 
1991-16 J.CJ.M. van den Sustainable Economie Development: An Overview 

Bergh 
1991-17 J. Barendregt Het mededingingsbeleid in Nederland: Konjunktuurgevoeligheid en 

effektiviteit 

1991-18 B. Hanzon On the Closure of Several Sets of ARMA and Linear State Space 
Models with a given Structure 

1991-19 S. Eijffinger The Japanese Financial System and Monetary Policy: 
A. van Rixtel a Descriptive Review 

1991-20 LJ.G. van Wissen A Dynamic Model of Simultaneous Migration and Labour 
F. Bonnerman Market Behaviour 


