
ET
Faculteit der Economische Wetenschappen

05348

The Transformation of Extended Entity
Relationship Generalization Hiërarchies
into Tables and Meta Tables

E.R.K. Spoor
R.J. Veldwijk
M. Boogaard

Research Memorandum 1991-47

vrije Universiteit amsterdam

THE TBANSFORMATION OF EXTENDED ENTITY RELATIONSHIP
GENERALIZATION HIERARCHIES INTO TABLES AND META TABLES

by

E R K SPOOR, R J VELDWIJK, and M BOOGAARD

The transformation of generalization hierarchies into relational.
format caimot be accomplished in a natural fashion. The most popular
way to implement a generalization structure is either to compress the
hierarchy into one table or to represent it by means of a separate
table for each class and subclass in the hierarchy. However, both
techniques are accompanied with specific problems that become unac-
ceptable in case of hierarchies that are structurally unstable, have
many subclasses and/or use specializing attributes that apply to
several of the subclasses.
This article proposes a different technique in which generalization
structures are mapped into collections of tables and meta tables. Meta
tables contain data about the hierarchy.
The Entity Relationship approach is chosen as a frame of reference.

1. INTRODÜCTION

A survey of the literature that proceeded from the Entity Relation-
ship Model (ERM) [Chen76] reveals several proposals and many dis-
cussions about the ways in which the ERM abstraction principles could
be extended to include the concept of generalization/specialization
(see e.g. [Sche80], [Lenz83], [Ceri83], [Teor86], and [Tuch90]). Cur-
rently, two constructs, commonly known as generalization and subset
hierarchy, are widely used vehicles for the representation of this
desired concept. Both constructs are based on the principle that
subclasses of a certain class E are to be represented as subsets of
the entity set that represents E. The difference between the con
structs originates from the existence of a selection mechanism in case
of generalization. This mechanism causes the partition of the class E
into subclasses. The subsets that represent these classes are always
disjoint.
Subset hierarchy, on the contrary, does not include a selection
facility, so partitioning is therefore not enforced and the subsets in
the hierarchy may overlap.

Being conceptual tools, interpretations of the ERM including the
extension described above (usually known as Extended Entity Relation-

1

ship (EER) approaches, a convention which we will adapt) have been a
focal point in the development of design methodologies. Especially the
phase of transformation of EER structures into implementable hier-
archical, network or relational structures was, and as f ar as the
latter is concemed still is, a favourite topic on ER meetings (see
e.g. [Dave83], [Marc88], and [Loch90]).
A review of the suggestions concerning transformation of EER struc
tures over the years shows that all but the generalization constructs
can be transformed into relational format in a rather straightforward
manner. It appears that the relational counterparts that have been
suggested for the generalization and hierarchy constructs usually
imply a total loss of hierarchy and/or usage problems (see e.g.
[Ceri83]).

This article introduces an alternative technique to transform general
ization and subset hierarchy structures into collections of relational
tables. The core idea is that many problems can be solved if we use a
combination of tables and meta-tables (i.e. tables that contain data
about the hierarchy) to map onto.

The profile of the article is as follows. In Section 2 a frame of
reference is introduced, that is, the formal constructs of generaliz
ation and subset hierarchy from an Entity Relationship point of view
are given. Next, in Section 3 details are presented about the conse-
quences of the usual way to accomplish the transformations concerned.
In Section 4 the alternative technique is introduced by means of an
example. Finally, in Section 5, some considerations concerning the
general applicability of the proposed transformation technique are
made.

2. A FRAME OF REFERENCE

As stated in the previous section, the difference between general
ization and subset hierarchy is the existence in case of general
ization of a selection mechanism to partition a class into subclasses.
Conform to the principles of ERM, this mechanism is usually defined to
be a function from entities to values, called the underlying attribute
[Schi79] . For each entity of the superset the value of the underlying
attribute indicates to which subset the entity belongs. This value is
the name of the concerned subclass. So, in order to define general
ization properly, a distinction between names of classes and entity
sets has to be made.

The origin of the distinction is the axiomatic difference between the
existence of an entity and its essence. An entity is not only supposed
to exist, but apart from this aspect, it is distinct from other enti
ties in some (organizational) context by means of its properties.
This abstraction principle can be given a formal basis by means of the
mathematical relation TYPE. TYPE is a subset of the Cartesian product
{e|e is an entity} x N, in which N is a set of type names. Two arbit-
rary entities ex and e2 are of the same type if and only if there is a
type name N such that (e1?N) and (e2,N) are elements of TYPE. In other

2

words, the relation TYPE adds to each entity at least one type name of
a class to which it belongs. Entities that represent a particular
class at a certain instance of time have the same type name. More
formally, let N be a type name, then with ó*N the set of entities
representing the class with type name N is given.
In the following discussion, the terms class and type will be treated
as synonyms.
Attributes typical for ERM, are functions from entity sets onto value
sets. An attribute A defined on the entity set 5N is a mapping onto a
set of (possibly compound) values V, denoted as: A: 6N -> V.
The collection of attributes defined on an entity set characterizes
this set. To be more specific, the characterization of an entity set
of type N, upon which the attributes A and B are defined, is given by
N(A.B).1 The characterization of 6"N gives Information about the
essence of its entities.
The attribute or collection of attributes that maps an entity set in a
one-to-one fashion to the corresponding value set or collection of
value sets is called key. Precisely one key is arbitrarily chosen to
be the primary key, also called identifier. In the characterization of
the entity set concerned, this key is indicated by an underscore of
all the attributes involved.

The ERM has also facilities to represent relationships between en
tities. A relationship is considered to be a mathematical relation
between entities. Relationship sets, which represent relationship
classes, can be symbolized in quite the same marmer as entity sets.
The precise adjustments to the set of typenames N and the way a rela
tionship set SR can be characterized however, goes beyond the scope of
this article (a thorough description can be found in [Spoo89]).

Now, having introduced notions such as type, typename, entity set and
characterization, the definition of the generalization construct can
be given. Let 5NX and Ó"N2 be disjoint entity sets having the
attributes A and B in common, i.e. these attributes are defined on an
entity set SNg which contains the sets 6NX and Ó"N2.
The characterization of the set ó"Ng is given by Ng(A,B,C), in which C
is the underlying attribute defined by C: 5Ng -> {NJL,^}. In other
words, the attribute C maps from the root entity set onto a subset of
the set of type names N. These type names correspond to the names of
the subsets of 5Ng.
The definition of subset hierarchy is the same, except for the under
lying attribute C, which must be omitted in that case.

3. ORDINARY TRANSFORMATIONS

With the relevant EER representation principles as a frame of refer-
ence, the rules that are usually applied to transform EER structures
into relational structures can be evaluated.

Actually, the characterization of an entity set should also contain the value sets
to which the attributes map. However, this does not contribute to the discussion
(see [Spoo89]).

3

The transformation of non-generalization constructs may be accom-
plished quite straightforward. Moreover, if entity existence and
entity essence are strictly separated, as in this article, the trans
formation appears to be quite natural. The most central rule concerns
the transformation of a characterization into a relational table. To
be more specific, if N(A,B) is a characterization of some entity set,
then it may be interpreted as a table named N with relational at
tributes A and B, of which A is the primary key. The domains of these
attributes are their respective value sets.

Relationship sets can be converted in at least two different ways. One
way is transform a relationship set into an additional foreign key to
be included in one of the related tables. This can only be accom-
plished with 1:1 or l:n relationship sets since they have a functional
character. They other way is create a separate table for the relation
ship set (in case of l:n or n:m relationship sets). In order to exist
as a table of its own right, however, the relationship set must first
be 'aggregated' into an entity set (i.e. each relationship is con-
sidered to be an entity). The construct that creates the charac
terization of this new entity set adds the keys of the involved entity
sets. Subsequently, this characterization can be transformed into a
table (see [Spoo89] for a precise description of the aggregation
construction and for a complete set of transformation rules).

Given the separation of entity sets and typenames, the usual trans
formation of subset hierarchy and generalization, can be recalled as
follows. In the case of subset hierarchy, let N^g) and N2(K,A) be
characterizations of aH1 and CTN2 respectively (crN2 is a subset of
aNx). This hierarchy is to be represented by means of the tables NX(K)
and N2(K,A) or by means of one table Nj/CK.A).
In the case of generalization, let NG(g,C), Nj^K.A), and N2(K,B) be
characterizations of aNG, aNj, and <rN2, such that a^t and CTN2 are
disjoint subsets of CTNG and C is the underlying attribute. The trans
formation of this type of generalization reveals either the tables
NG(K,C), N^K.A), and N2(K,B) or just one single table NG'(K.A.B.C) .
Thus, the possible choices for the relational representation of both
types of generalization are to introducé separate tables or to ignore
the hierarchy and put all the information into one table.
These solutions, however, cause severe problems in practice, especial-
ly if one has to face hierarchies with many subsets in dynamic envi
ronments .
In the remainder of this section these problems will be amplified by
means of a real world example.

The example concerns a consolidation system for an international
corporation. This system contains book values of all the subsidiary
companies divided over about 150 different balance sheet items.
Furthermore, to enable financial analysis on corporate level, additio
nal attributes register values depending on the kind of balance sheet
item. For the example, only five of the 150 items will be taken into
consideration, i.e. (1) property, with additional attributes purchase,
sales, and depreciation, (2) land, with purchase and sales; (3)
remaining assets, without additional attributes; (4) equity capital,

4

with the attribute interest, and (5) loan capital, also with the
attribute interest. Furthermore, historical, legal, and intercompany
relations, as well as memo entries, profit and loss accounts etc. will
not be considered. The balance sheet items are clustered into about 42
groups depending on the specializing attributes they share. In the
example, there are three subsets recognized, i.e. property, land, and
capital. Figure 1 shows the example hierarchy.2

COMPANY
ITEM

AMOUNT

BALANCE
PROPERTY

SUBNAME

BALANCE
LAND

BALANCE
CAPITAL

6 SALES
PURCHASE il
DEPRECIATION

l SALES
PURCHASE

INTEREST

Figure 1

Having described the problem environment, the question is what kind of
transformation rule should be applied to convert the EER consolida-
tion scheme into a relational scheme. As already noticed by several
authors, both the described rules for the transformation of generaliz-
ation have certain drawbacks (see e.g. [Smit77]).
According to the first rule the hierarchy should be compressed into
one single table (see Figure 2). This solution causes several prob-
lems. The most important is, how to interpret the NULL values that
appear in the table? A NULL value does not indicate whether it stands
for 'not applicable' or 'not known'. This ambiguity also causes
uninterpretable query results. Maintaining the meaning of the NULL
values is the programmer's responsibility.

Notice that the hierarchy is not complete, i.e. the superset also conteins the
remaining assets. The applied symbols and their meaning are from [Ceri83].

5

BALANCE (COMPANY.ITEM,AMOUNT,PURCHASE,SALES,DEPRECIATION,INTEREST)

GOMPANY ITEM AMOUNT PURCHASE SALES DEPRECIATION INTEREST

THAILND PROPERTY 200 50 0 10 ...

THAILND LAND 50 20
THAILND ASSETS 150
THAILND EQUITY 300 10
THAILND LOAN 100 20

...

Figure 2

The second transformation rule implies the organization of a structure
of separate tables, one for each entity type in the hierarchy. Figure
3 shows this transformation for the example case.

BALANCE (COMPANY.ITEM.AMOUNT.SUBNAME) ,
BALANCE_PROPERTY (COMPANY.ITEM,PURCHASE,SALES,DEPRECIATION)
BALANCE_LAND (COMPANY.ITEM,PURCHASE,SALES)
BALANCE_CAPITAL (COMPANY.ITEM.INTEREST)

Figure 3

Although the mentioned NULL value interpretation problem now has been
solved, other imperfections remain. First, the database structure does
not implicitly enforce a one-to-one correspondence between the names
of the subordinate tables and the values of the underlying attribute
SUBNAME. This correspondence is necessary to guarantee the
distinctness of the subordinate tables and to prevent incorrect
registrations like the presence of a tuple in the BALANCE_PROPERTY
table having the ITEM-value 'PROPERTY'. Maintaining the one-to-one
mapping again is a programmer's responsibility.
Second, it might become difficult to query the tables (remember that
the real environment involves as much as 42 subordinate tables). As an
example, suppose one wishes to retrieve the following information:
'all data about the loan sheet item of the Thailand sübsidiary'. Since
the items are divided into groups, depending on the specializing
attributes they share, the first necessary step is to obtain the
relevant group from the BALANCE table and then to query both the
BALANCE table and the selected subordinate table. Thus, the formula-
tion of the second query depends on the outcome of the first. This
might be acceptable in an interactive session, but it is of course

6

impossible to embed it into a program.3 Figure 4 shows the queries and
their results.

1: SELECT SUBNAME FROM BALANCE WHERE ITEM - 'LOAN'

Result:
SUBNAME

BALANCE_CAPITAL

2: SELECT BALANCE.COMPANY, BALANCE.ITEM, AMOUNT,INTEREST
FROM BALANCE, BALANCE_CAPITAL
WHERE BALANCE.ITEM - 'LOAN'
AND BALANCE.ITEM - BALANCE_CAPITAL.ITEM
AND BALANCE.COMPANY - BALANCE_CAPITAL.COMPANY

Result:
COMPANY ITEM AMOUNT INTEREST

THAILND LOAN 100 20

Figure 4

A third imperfection of the transformation rule in question has to do
with the instability of generalization structures in practice. Data-
oriented design methodologies usually support the widespread misunder-
standing that data may vary over time while data structures should be
stable. In case of evolving organizational structures, however, data
structures quite often have to be changed too. The discussed consoli-
dation system, for instance, has to be revised each year in order to
include new groups, delete certain groups, or change groups.
Whereas the single table transformation is concerned, these mutations
imply modifications in the attribute structure of the target table,
which is not always easy to accomplish. In case of the second trans
formation rule, one has to face the problem of restructuring the
collection of target tables, i.e. adding new tables, deleting tables,
etc.

Summarizing the previous discussion, it can be argued that the two
transformation rules considered are not particularly useful whenever
the amount of subordinate entity types is large, the hierarchy is un-
stabIe, and/or many of the specializing attributes apply to more than
one subordinate entity type.

Actually a higher order query language is required in this case, as already has been
posed by [Smi t77].

7

4. THE META TABLE TECHNIQUE

The core idea behind the meta table technique to be presented can be
expressed as follows. Since the power of relational database manage
ment systerns is to facilitate manipulation of tuples in flat struc-
tures of tables that are meant to be stable, the necessary transform-
ation rule should organize all Information concerning generalizations
and all unstable structural information into tuples of separate
tables. Such tables will be called meta tables hereafter.
Using the conceptual scheme facility as a tooi again, the intended
transformation may also be considered as a two-step process. First,
the subject EER structure is to be transformed into an ER structure
without generalization constructs. This can be accomplished by means
of so called abstract entity types [Wagn89]. Abstract entity types are
the conceptual counterparts of meta tables.
In the second step the intermediate ER structure can be converted into
a single or multiple table structure as described in Section 3.
Figure 5 illustrates the result of the first step applied to the
consolidation hierarchy.

VALUE

SUBTYPE

v6 SUBNAME

MEMBER

BALANCE
•o COMPANY

-»K> ITEH
-** AMOUNT

VAR_
ATTRIB
DEF

ir
l' ATTRIB

l TYPE
b WIDTH

Figure 5

The diagram reveals three abstract entity types, i.e. two entity types
(SUBTYPE and VAR_ATTRIB_DEF) and one aggregated relationship type
(IMAGE). Each of these abstract entity types is defined in a similar
manner as described in Section 2. For instance, SUBTYPE is a typename,
CTSUBTYPE is a set of abstract entities (i.e. subclasses) and SUBNAME

8

is a function from CTSUBTYPE onto the set of names
{PROPERTY,LAND,AS SETS,CAPITAL}.
The diagram also shows that the most general attributes (and also the
most stable ones in the case situation) have been brought together
into the concrete entity type BALANCE, while all specializing at
tributes are considered to be variable and as such defined by means of
the entity type VAR_ATTRIB_DEF and the aggregated relationship type
IMAGE. The transforaation of this intermediate structure into a
collection of relational tables is given in Figure 6.

BALANCE (COMPANY.ITEM,SUBNAME,AMOUNT)
SUBTYPE f SUBNAME')
VAR_ATTRIB_DEF (ATTRIB,TYPE,WIDTH)
IMAGE (COMPANY.ITEM.ATTRIB.VALUE)

BALANCE

COMPANY ITEM SUBNAME AMOUNT

THAILND PROPERTY PROPERTY 200
THAILND LAND IAND 50
THAILND ASSETS ASSETS 150
THAILND EQUITY CAPITAL 300
THAILND LOAN CAPITAL 100

IMAGE

COMPANY ITEM ATTRIB VALUE

THAILND PROPERTY PURCHASE 50
THAILND PROPERTY SALES 0
THAILND PROPERTY DEPRECIATION 10
THAILND LAND PURCHASE --
THAILND LAND SALES 20
THAILND EQUITY INTEREST 10
THAILND LOAN INTEREST 20

VAR ATTRIB DEF

ATTRIB TYPE WIDTH

PURCHASE
SALES
DEPRECIATION
INTEREST

NUM
NUM
NUM
NUM

3
3
3
3

SUBTYPE

SUBNAME

PROPERTY
LAND
ASSETS
CAPITAL

Figure 6

Observe that the l:n relationship set MEMBER, which has no attributes
of its own, is represented by the foreign key SUBNAME in the BALANCE
table. Furthermore, regard the VALÜE attribute of IMAGE. Although this
attribute contains only numbers due to the f act that all specializing
attributes concern amounts, generally this is not the case. Therefore
the underlying domain of VALÜE has to be primitive (i.e. character
strings).

The question to be answered is whether the ER structure given in
Figure 5 and its relational implementation really offer a better
solution for the consolidation problem. The three sticking points
discussed in the previous section were: (1) retaining the integrity of
the structure, (2) querying the structure, and (3) the ability to
change the structure in time.

As far as integrity is concerned, consider figure 6 again. The values
of the SUBNAME-attribute in the table SUBTYPE, which represent the
values of the underlying attribute in the original hierarchy, do not
refer any longer to subordinate tables. Instead, BALANCE is the only
'real' table in the structure. All data concerning the hierarchy and
the specializing attributes of the subordinate classes in the hier
archy are represented by means of meta tables. The partitioning of the
class of balance entities is automatically ensured by the referential
integrity constraint BALANCE -> SUBTYPE.
The only additional integrity rule that is necessary, as f ar as the
consolidation example is concerned, must guarantee that e ach value of
the attribute VALUE meets the requirements of its corresponding format
given in VAR_ATTRIB_DEF (the correspondence itself is assured by the
referential integrity constraint IMAGE -> VAR_ATTRIB_DEF). However,
this rule is of a lower order than the underlying attribute
constraint.

Now, how about querying? In contrast with the ordinary transform-
ations described in Section 3, the request for 'all data about the
loan sheet item of Thailand' (see Section 3) can be reformulated into
a simple query, the results of which do not suffer from the mentioned
interpretation problems. Figure 7 shows the query and its results.

10

SELECT B.COMPANY, B.ITEM, B.AMOUNT, I.ATTRIB, I.VALUE
FROM BALANCE B, IMAGE I
WHERE B.COMPANY - I.COMPANY
AND B.ITEM - I.ITEM

Result:
COMPANY ITEM AMOUNT ATTRIB VALUE

THAILND LOAN 100 INTEREST 20

Figure 7

Of course, since the query uses both table and meta table data, the
results of the query have a mixed nature. They have to be read as
follows: COMPANY is THAILAND, ITEM is LOAN, AMOUNT is 100, and (from
left to right) INTEREST is 20. Whenever the group of the loan item
contains more than one attribute, the AMOUNT, COMPANY, and ITEM values
are repeated for each additional attribute.

The final aspect to be touched upon in this section is the flexibility
of the presented relational implementation, in other words, is the
solution able to adapt to changes in the hierarchical structure? The
consolidation system in particular appears to be subject to frequent
changes as f ar as its balance hierarchy is concerned. Each year new
groups are added, other groups are changed or deleted.
Considering Figure 6 again, it is obvious that new groups can easily
be added just by inserting the groupname into SUBTYPE. Furthermore, as
long as the two referential integrity constraints are not violated,
groups may also be deleted. Finally, groups can be changed, i.e. the
attributes of each group may be modified as long as the referential
integrity constraint between IMAGE and VAR_ATTRIB_DEF is not violated
and all VALUE values meet the requirements given in VAR_ATTRIB_DEF.

Summarizing the preceding discussion, the meta table technique applied
to the consolidation domain has certain advantages over the conversion
types described in Section 3. However, questions arise whether this
technique does not introducé other difficulties. Does the magnitude of
the database play a role? Can multilevel hierarchies also be trans-
formed? These points will be touched upon in the next section.

5. SOME CONSIDERATIONS

The collection of tables presented in Figure 6 constitutes a partial
dedicated solution to a specific problem. Although we urge the f act
that the problem is quite common in daily practice, it is also speci
fic because it concerns only one particular hierarchy. This hierarchy
contains two levels of which the number of sübclasses and their
attributes evolve in time, while the attributes of the superclass

11

remain stable. The presented solution is partial dedicated because the
stable superclass is represented by a dedicated table and all variable
subclass information is put into the general tables IMAGE and
VAR_ATTRIB_DEF.

In order to generalize from the specific character of the consolida-
tion domain, the utility of tables versus meta tables as well as the
implementation of multi-level hierarchies have to be discussed.
First, tables versus meta tables. Suppose the AMOUNT attribute of the
BALANCE type as shown in Figure 5 is to be considered unstable too,
e.g. it may be deleted or lts name may be changed in time. It is clear
that the attribute should then be represented by means of tuples in
the IMAGE and VAR_ATTRIB_DEF tables. This can be accomplished quite
easily. In f act, all classes and attributes in the system may be
represented by means of tuples in meta tables. Figure 8 depicts a more
generalized intermediate ER structure together with its relational
implementation that does not contain problem specific entity types any
more.
Observe the fact that the BALANCE entity type is replaced by the
entity type ENTITY that has one single attribute. This attribute is
defined to be the identity function ID: «ENTITY -> «ENTITY, which is
necessary because the key attributes COMPANY and ITEM can no longer
serve as Identification vehicles. The transformation of the abstract
entity type ENTITY to a relational format results in a table contain-
ing existency symbols with the same function as surrogate values in
[Codd79]. No te further, that in figure 8 all the type names in a
hierarchy are entities of TYPE and that the hierarchical relationship
between a class and its subclasses now is represented by means of the
relationship type CLUSTER. Finally, regard the new entity type
TYPED_ATTRIBUTE. This entity type is required to register the differ-
ence between a key and a non-key attribute.
Thus, we may conclude that the designer performing the transformation
from EER to ER scheme has a certain freedom to choose whether to
represent a certain class by means of entities of abstract entity
types or by means of a separate entity type. His choice therefore will
not only be determined by the fact that the class is a subclass in a
hierarchy or by the instability of the class. He also may take per
formance considerations into account. Performance plays a role when-
ever the magnitude of the class as far as its attributes and tuples
are concerned, is large. The cardinality of, for instance, the IMAGE
table may grow very f ast. Such grow eventually leads to performance
problems that might take the edge of the solution.
Another way to avoid an unacceptable performance is to combine the
CLUSTER, TYPE, TYPED_ATTRIBUTE, and ATTRIBUTE meta tables with one of
the usual transformation results given in Section 3, for instance with
the BALANCE table in Figure 2. Because the meta tables contain all the
hierarchy information necessary, integrity can be maintained and
queries like the one in the previous section may also be suitably
formulated. As far as structural changes are concerned, all necessary
DML statements on the meta tables and corresponding DDL statements on
the BALANCE table can be performed by means of automated procedures.
This reduces the effort necessary for the maintenance of the system
(see [Veld91] for further details of this technique).

12

TYPE

CL NAME

TYPENAME

KEY-PROPERTY

ATTRIBUTE

«•' ATTNAME
TYPE

WIDTH

VALUE

ENTITY
-*K> ID

Relational implementation:

ENTITY
ATTRIBUTE
TYPE
CLUSTER
TYPED-ENTITY

(IS)
(ATTNAME,TYPE,WIDTH)
(TYPENAME,CL_NAME)
(CL_NAME.TYPENAME)
(ID.TYPENAME)

TYPED-ATTRIBUTE (TYPENAME.ATTNAME.KEY-PROPERTY)
IMAGE (ID.TYPENAME.ATTNAME.VALUE)

Figure 8

The second aspect that needs to be elaborated is the representation of
multi-level hierarchies. As Figure 8 shows, the representation of such
hierarchies, which may include a mixture of generalization and subset
hierarchy constructs, is accomplished by means of the relationship
type CLUSTER. The relational counterpart of this relationship type and
entity type involved has been defined in such a way that the l:n
constraint is enforced by means of the referential integrity con-
straints TYPE -> CLUSTER and CLUSTER -> TYPE.
The hierarchy can be made explicit by means of an outer-join between
TYPE and CLUSTER (see figure 9)*.

The symbol (+) represents the outer-join specific for the database management
B « n&AP! F ï n u h ï r h fh» M M n l » KAR h<*»n i«n l eamntmH system ORACLE in which the example has been implementecl

13

SELECT TYPE.TYPENAME, CLUSTER.TYPENAME
FROM TYPE, CLUSTER
WHERE TYPE.CL_NAME - CLUSTER.CL_NAME (+)

Figure 9

6 CONCLUSIONS

We conclude that the transformation of a hierarchical structure into a
collection of tables and meta tables has advantages over the usual way
it is accomplished. Instead of simply ignoring the hierarchy by
placing all data into one single table, or dedicating a table to each
class and subclass, a representation structure is proposed that
includes problem domain independent tables (called meta tables) and
may (but not necessarily must) include domain dependent tables. The
meta tables contain information about the hierarchy and the involved
classes that is otherwise lost if the transformation is done in the
traditional way.

The combination of meta tables and tables also provides the database
designer with a certain amount of freedom to choose whether to repre
sent a certain class (not only information about its internal struc
ture but also about its members) as tuples in the meta tables or as a
dedicated table. This choice depends on requirements of flexibility
and performance. Representation of classes by means of tuples in the
meta tables implies a high degree of flexibility as far as structural
changes are concerned. However, this is only sensible to do with
classes of relatively low magnitude, i.e. having a limited amount of
members and attributes; otherwise performance problems will be inevi-
table. If flexibility is not a hard criterion, but performance is,
then it is preferable to represent the class by a dedicated table.
If both flexibility and performance play a role, the designer might
choose a mean between the two extremes. This compromise consists of
two parts, i.e. (1) the result of one of the traditional transform-
ations, and (2) the part of the proposed scheme that only contains
information about the hierarchy and the internal structure of the
involved classes, but not about the individual members of these
classes. Such a combination of techniques offers an interesting
increase of flexibility because all structural changes, which imply
rewriting DDL and DML statements and recompiling of the involved
programs, can be done by automated procedures. In this case perform
ance is no problem.

14

[Ceri83]

[Chen76]

[Codd79]

[DavI83]

[Lenz83]

[Loch90]

[Marc88]

[ScheSO]

[Schi79]

[Smit77]

[Spoo89]

[Teor86]

Geri S ed. Methodology and Tools for Data Base Design
North Holland (1983)

Chen P P 'The Entity-Relationship Model - Toward a
Unified View of Data' ACM Transactions On Database
Systems 3 (1976)

Codd E F 'Extending the Database Relational Model to
Capture More Meaning' ACM Transactions on Database
Systems Vol 4 No 3 (1979)

Davis C G, Jajoda S, Ng P A, and Yeh R T eds. Entity
Relationship Approach to Software Engineering Procs.
Third Int. Conf. E-R, North Holland (1983)

Lenzerini M and Santucci G 'Cardinality Constraints in
the Entity-Relationship Model' in: [Davi83]

Lochovsky F H ed. Entity-Relationship Approach to
Database Design and Querying Procs. Eighth Int. Conf.
On E-R, North Holland (1990)

March S T ed. Entity Relationship Approach Procs. Sixth
Int. Conf. On E-R, North Holland (1988)

Scheuermann P, Schiffner G, and Weber H 'Abstraction
Capabilities and Invariant Properties Modelling within
the Entity-Relationship Approach' in: [Chen80a]

Schiffner G and Scheuermann P 'Multiple Views and
Abstractions with an Extended-Entity-Relationship
Model' Computer Languages Vol 4 (1979)

Smith J M and Smith D C P 'Database Abstractions:
Aggregation and Generalization' ACM Transactions on
Database Systems Vol 2 No 2 (1977)

Spoor E R K Expert System Design in an Entity Rela
tionship Environment Ph.D. dissertation, Free Univer-
sity Press, Amsterdam (1989)

Teorey T J, Yang D and Fry J P 'A Logical Design
Methodology for Realtional Databases Using the Extended
Entity-Relationship Model' ACM Computing Survey Vol 18
No 2 (1986)

15

[Tuch90] Tucherman L, Casanova M A, Gualandl F M, and Braga A P
' A Proposal for Formalizing and Extending the General-
ization and Subset Abstractions in the Entity-Relation-
ship Model' in: [Loch90]

[Veld91] Veldwljk R J, Boogaard M, Dijk M V van, and Spoor E R K
'EDSO's, Implosion and Explosion: Concepts to Automate
a Part of Application Maintenance' Information and
Software Technology (june 1991)

[Wagn89] Wagner C F 'Implementing Abstraction Hierarchies'
Entity-Relationship Approach: A Bridge to the User
Batin C ed. North Holland (1989)

16

