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Recently Ross [1] proposed an elegant method of approximating transition 

probabilities and mean occupation times in continuous-time Markov chains 

as based upon recursively inspecting the process at exponential times. 

The method turned out to be amazingly efficiënt for the examples inves-

tigated. However, no formal rough error bound was provided. Any error 

bound even though robust is of practical interest in engineering (e.g., 

for determining truncation criteria or setting up an experiment). This 

note primarily aims to show that by a simple and Standard comparison 

relation a rough error bound of the method is secured. Also some 

alternative approximations are inspected. 

1. Introduction. Let {X(t) , t>0} be a homogeneous continuous-time 

discrete state Markov chain with transition rate qtJ for a transition 

from state i into state j (j^i) , so that qt = 2. _ q±j is the rate at 

which it leaves state i. For expository convenience suppose that qt is 

uniformly bounded. Denote by Pt the matrix of transition probabilities 

Pt(i,j) over time t. Then for any B>supiqt we have (cf. Kohlas [2], p...) 

Pt - E^=0e-
tB[(tB)n/n!][l+R/B]n = 2£=0[(tR)

n/n!] (1) 

where R is the matrix of transition rates r^^q^ for j^i while riA = 

—q̂ _ . That is, Pt can be thought of as generated by a Poisson process with 

dominating parameter B which generates jumps and with transition probabi-

lity matrix [I + R/B] upon a jump. (Note that this matrix is stochas-

tic.) This is generally referred to as uniformization. By truncating the 

Poisson probabilities we hereby have in principle a first 

straigthtforward method of approximating Pt. A major disadvantage however 

is its explicit non-linear time dependence. For any different t-value the 

Poisson probabilities are to be recalculated. We would rather have a 
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successive approximation with a time homogeneous recursion that naturally 

grows linear in time. To a large extent this has been investigated in Van 

Dijk [4] for both controlled and uncontrolled Markov processes including 

jumps and diffusion processes. In essence, it all comes down to a simple 

comparison result for approximating 'initial value problems' as has long 

been known in numerical analysis (cf. Lax and Richtmeyer [3]). A 

simplified version of its application to stochastic matrices will be 

presented in the next section. 

2. Comparison result. Let Px and P2 be stochastic matrices such that 

for some £>0: 

IIP1-P2II * « (2) 

where | |A| | stands for the usual supremum norm |'| A| |-suptS, | a.̂^ | . Then by 

the telescoping 

(P?-PS> = 25:5 Pï[p1-p2]Pin-1- , t ) 

and the f act that stochastic matrices are supremum-norm preserving (as 

||p||=l for P stochastic), we immediately conclude 

||PÏ-P§|| ̂  en (ne ). (3) 

3. Error bounds. Consider a fixed t, ne and set h-t/n. Let Ph be the 

transition matrix over time h as in section 1 and let Ph be some given 

stochastic matrix for the purpose of approximation, such that for some 

c>0: 

llPh-Phll-* *h. W 

Then from (2) and (3) wi th Px=Ph and P2=Ph
 a n ^ t * i e Markov p r o p e r t y 

P t=Pnh=Pg , we conclude: 

| | P t - P g | | < shn - et. (5) 
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In f act, by considering a fixed h and recursively computing BJ!j+1 

= Ph(P£) we thus establish approximations for Pnh linearly in time nh. 

When one is interested only in some expected measure f (X,. |X0=i) with f 

a given function, the multiplication and storage of large matrices can be 

avoided by the recursion 

ï* + 1f(i) - Ph(P*f)(I) 

and 

Phg(i) - Sj Ph(i,j)g(j) (vi) 

so that Pgf (i) is an approximation of f (Xt |X0=i) for t-nh. From (5) 

one immediately concludes the error bound: £t||f|| with | j f||=stapi|f(i)|. 

For example, putting f(i)=l for ieB and 0 otherwise we so approximate 

Pt(i,B) as in sections 1 and 2 of Ross [1]. 

4. Approximat ions 

4.1 Exponential truncation. As a first application, by virtue of the 

exponential expansion (1) one readily verifies the error bound in (4) 

with 

£ - 2hB2ehB, (6) 

where B^supj^, by using the truncation (Euler approximation) 

Ph = [I + hR] (7) 

with h<B_1. This linear order in h can be sharpened to an order 0(hn) by 

Ph - 2£=0e-
hB[(hB)kA!][I+R7B] = 2£ = 0 [ (hR)

k /k! ] [1-S^n + 1 <
hB> V j ! ] • 

(8) 

4.2 Ross' approximation. The approximation proposed in Ross [1], as based 

upon inspection over an exponential time with mean h, yields the 

approximation matrix: 

Ph - (I-hR)"
1 - 2£ = 0(hR)

k. (9) 
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Comparing this with the exact exponential expression (1) again, and not­

ing that (I-hR)"1 is a stochastic matrix, we get the error bound 

2hB2(l+ehB) (10) 

which as in (6) is also linear in h. Rather amazingly, however, the 

approximations of Ross [1] turn out to be much more accurate. Though an 

error bound of Ross' method is hereby secured, as is the prime intention 

of this note, further investigation as to a tighter error bound thus 

remains of interest. As a variation to avoid determining the inverse for 

large matrices, one could simply truncate the series, say at k=n, which 

however may lead to a non-stochastic matrix. Nevertheless, by carefully 

using the telescoping in section 2, one can show that this truncation 

leads to a deviation from Ross' approximation (9) no more than etc0(hn). 

Remark. Though this note is restricted to transition probabilities and 

marginal expectations, extensions in the same spirit can be provided for 

expected total reward functions up to a given time t (possibly random) 

such as the mean occupation time up to exiting a given set as in sections 

3-5 of Ross [1] . Particularly, in accordance with Van Dijk and Puterman 

[5] the linear order in time t (possibly as expected time) in (5) can be 

retained. 
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