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Abstract

In this paper we report Monte Carlo results on the small sample properties
of instrumental variables, asymptotically efficient two-step and iterative
Gauss-Newton estimators for a Koyck (1954) distributed lag model with
uncorrelated errors (model 1) and with first order autoregressive errors
(model 2). We use the technique of control variables to increase the pre-
cision of the Monte Carlo results and summarize the outcome using response
functions. '

Two main questions have been investigated for a sample size T=30 and T=60:
(a) are the asymptotically efficient estimators to be preferred to a
consistent but inefficient instrumental variables estimator?, _
(b) does it pay to iterate an asymptotically efficient estimator until cdn—
vergence ig achieved?

For the sample sizes considered, we conciﬁde that the efficient two-step
estimator is usually preferred teo the instrumental variables estimator and
that it has properties which are very similar to those of the iterative

Gauss-Newton estimator,
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1. Introduction

In recent years, several asymptotically efficient two-step and iterative
estimators for dynamic models with autocorrelated errors have been
presented in the literature. Some results on the small sample properties

of the two-step and iterative estimation procedures are.also available.
Among closely related Monte Carlo studies, we should like to mention the
comparison of the finite sample properties of several estimators for the
regression model with autoregressive errors by Rao and Griliches (1969)

and for the Koyck {1954} distributed laé model by Merrison (1970) and
Dhrymes (1971). Hatanaka (1974%) presents an efficient two-step estimator
for a single equation dynamic adjustment model with first order autoregres-
sive errors and reports results of a simulation experiment. Hendry and

Shra (1977)investigate the small sample properties of instrumental variables
estimators in a éimultaneous equation framework with aﬁtoregressive errors.
Harvey and McAvinchey (1979) compére the efficiency in small samples of
various two-step and iterative estimation procedures for regression models
with moving average errors. ‘

In this paper, we report Monte Carlc results on instrumental variables,
efficient two-step and iterative GauszNewton estimators of a Koyck distrib-
uted lag model with uncorrelated errors {model 1) and with first order

autcoregressive errors (model 2),
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The distributed lag model with a Koyck scheme, perhaps the most widely
used distributed lag model, is simple in the sense that it inveolves a
small number of parameters. The parameter of the lag distribution can
often be intempreted in terms of economic behavior such as adaptive
expectation formation or partial adjustment. Still, the problems generally
inherent in the estimation of distributed lag models are alsec present
here, so that Koyck's model is a natural candidate for a simulation study.
In the last decade, dynamic specification analysis has received much
attention in the econometric literature. As the different approaches to
specification analysis require estimates of several alternative dynamic
specifications, possibly arranged as a uniquely ordered sequence of re-
stricted models, the demand for computionally convenient estimation meth-
ods with desirable small and large sample statisiical properties has arisen.
Usually one has to choose between consistent but inefficient or consis-
tent and asymptotically efficient estimators, either iterative or not.

The choice is usually based on criteria such as the computational costs
involved, the small sample properties and the asymptotic efficiency.

In order to be able to offer some guidance for empirical work, we focus

on the small sample properties of one estimator in each of the 'three
classes of estimators, i.e. Liviatan's instrumental variables estimator,
an efficient two-step and an iterative Gausg-Newton estimator. The latter
is called. a minimum chi-square estimator by Dhrymes (1971) [see also
Dhrymes (197&)] , who shows that it becomes indistinguishable from the
exact ML estimator in larger samples.

In section 2, we shortly present the models and the estimation procedures.
A move detailed presentation of the estimation methods and their large
sample properties can be found in e.g. Dhrymes, Klein and Steiglitz (1970),
Harvey (1978) or in Palm (1978). In section 3, we describe the experiments.
Section 4 contains the results of the simulations. They are summari zed
using response functions. Instead of generating a large number of runs for
each experiment, we use the technique of control variates to increase the
precigion of the outcome of the simulations. In the last section, we draw

some final conclusions.



2., The models and the estimation procedures

We analyze the geometric distributed lag model
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where 0 < A < 1 and X, is independent of the error term u , for

t
all t and t' and T is the sample size. ’
We first consider the case where u, is a white noise (model 1) witﬁ finite
variance 02 . Then we assume that u£ is generated by a Ffirst order auto-
regressive proces (model 2). '

If the u,'s are independent and normally distributed, the likelihood
function is
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for a sequence of variables X with L being the lag-operator.
The first order conditions for a maximum of the log-likelihood function
with respect to B = (ao> @, . 2! are given by
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In the sequel we use‘the symbols ™" and " to indicate that a variable
.is evaluated at the first and the second step parameter estimates respectively.
The first order conditioms (2.4) are nonlinear in the parameter vector B .

We can solve them iteratively to obtain the maximum likelihood (ML} estimator,
However, it is well-known (see e.g. Dhrymes & Taylor (1976)) that the
following two-step estimator has the same asymptotic properties as the ML

estimator of B

-1

8§ = p-plydintkl

5 8 ’ : (2.6)

B =8
provided B is a consistent estimator of 8 such that V T (B - BO), with
BO being the true value of B , has some limiting distribution, and r(8)
is a non-singuler matrix such that

1 . 32 1n L (BO) -
plim = T'(B) = »plim = . (2.7)
T =»ca T T=co T 3B 98" )

As the log-likelihood function is proportiomal to u'u , maximizing the
likelihood function is equivalent to minimizing the sum of squares u'u .
One way to implement (2.6), such that (2,7) is satisfied, is to compute one
step of the Gauss-Newton algorithm starting with a consistent estimate of

By (see e.g. Palm (1978)), The formila for the Gauss-Newton algorithm is

given by
-1
2 _ =~ du  du! su
B =28 5@ "'5'6—-] ‘-5'8—1.1 .. (2.8a)
B =8B
=g o+ (xxr x)7L oy |B =3 (2.8b)
as %E-: - X*¥' in (2,5) ., Iteration of (2,8) yields the nonlinear least

squares estimator of £ , which has the same asymptotic properties as the
ML estimator. Whether the nonlinear least squares estimator is identical
with a conditional or the exact ML estimator depends on the treatment of

the initial values for the process x_ ., Notice also that the difference

between the two-step and the initial zonsistent estimator, B -8 , in (2.8)
can be computed through an ordinary least squares regression of the residuals
{i on their partial derivatives with respect to B , both evaluated at B .
These derivatives can be computed analytically as in (2.5) or numerically
(for numerically computed derivatives, see e.g. Harvey and McAvinchey (1979)).
We use the analytical formula for the derivatives and compute the two-step

estimator in (2.8) as follows:
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Consistent parameter estimates are obtained by Liviatan's instrumental
variables method applied to the transformed model

Yo T % (1 - 2) + A Ve-1 f @ XtV , t= 2’."" T (2.9}

With vy Sup - Amg g -1

The restriction 0 < A « 1 is imposed on the estimate X .

, using =x as an instrument for Yooy *

If X lies outside the interval [.05 , ,95] , it is fixed at the corres-
ponding boundary value and the parameters a and G, are estimated in

a regression of Ve ~ ) Yep OB Xy -

-The boundary values for A were chosen after some experimentation with

the model when A = .9 . For a becundary value very close to one and

A = .9 , the iterative estimator of X often has a ¢yclical behavior.
The variance of u_ is estimafed by 32 = g ﬁ2 with 4,= ¢
and U, = A U, + vt s =3, ..., T , where V. 1s an instrumental

variables residual.

In order to compute the two-step estimator in (2,8b) we rewrite the

~model (2.1) - after adding the same gquantity to both sides of the

equation - as

Kok _ ' * Ak
[yt + A o, Xt-l] = og + a; [xt] + A [ul xt~l] tu (2,10}

It is straightforward to see that tpe two-step estimator of B in (2.8b)
can be computed by ordinéry least squares applied to the equation (2.10)
after evaluation of the'quantities between brackets at the consistent
first step estimates.

Of course, there are many other ways to generate two-step estimators
with the same asymptotic distribution as the ML estimator. Any matrix r
satisfying the requirement (2.7) characterizes a two-step estimator, which
is asymptotically equivalent to the ML estimator. For example the
estimators proposed by Hannan (1965) and by Steiglitz and McBride (1965)
have this property. The small sample’properties of these estimators and
of Liviatan's instrumental variables estimator for model 1 have been

investigated by Morrison (1970).

We compute the two-step estimator of B in an OLS-regression of equation
(2,10) for t =2, ,.. T ., The variables involved in the regressand
and in the regressors of (2,10) are computed as

¥ = %+ A
t

* -
t il

and xt = xy + A X
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with ﬁg and ﬁz* being set equal to the sample mean of X, and x:
respectively, divided by 1 - ) (the process x, is stationary) .

t
. =

The estimate } has to lie inside the interval [.05 , .95)] . Otherwise
it is fixed at the corresponding boundary value and o and @, are

estimated in a regression of y, on & Finally, the variance of u

is estimated as in step 1 but using thetresiduals of step 2 . When ite;ating
the Gauss-Newton algorithm, we reestimate equation (2.10) by OLS after
evaluation of the regressand and regressors between the brackets at the
parameter estimates of the preceding step. The algorithm stops when
convergence is achieved, i.e. the change in the estimates of ay and X

is smaller than .00L , when the number of iterations is 100 or when the
restriction on A 1is violated for the second time. '

In model 2 , the disturbances uT; are generated by a first order autoregres-

sive process

u, = pu + g ' {2,11)

with Ipl <1, p# 2 and € being 2 normally distributed white
noise process with variance 02 .

Equation (2.1) can be written as

]
i

: ) ) .

Ve =P Vpq = 9ol =p)ta (xo -0 )t ey (2.12)
and the two-step Gauss-Newton estimator for @ = (ao &y A plt is given
by

-1 -
& -~ o€ ae! o€ :
6 = 0 - {—- “"] T € . . (2,13)
E 39 20 0=6

where 0 is an initial consistent estimator of 0 , is the matrix

EC)

of partial derivatives of the disturbance ¢, with respect to the elements

t
in 0
(1 -0 R |
* & * *
e . ¥ TP X e Fp TP Hpg
@ T *k ok ¥ * (2.1%)
o, (xg" =px7) e a(ReTy =0 Xp o)
| v ver  Upy

and £ = (g, €, ... ET)' is the vector of disturbances.

The second ;ighi-hand—side term of (2.13) is evaluated at the consistent
estimates © . The two-step estimator presented in (2.13) has the same

asymptotic properties as the ML estimator, provided the requirements in
(2.8) and (2.7) are satisfied. If we iterate the estimator (2,13) until

convergence, we get the conditional ML estimator.
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We compute the two-step estimator (2.13) as follows.

1.

As for model 1, we estimate the parameters Gos O amd X consistently

by instrumental variables applied to the transformed model (2.9) using

X,y @s an instrument for Vi and checking the restriction on A.

-~

Then we compute u, = Ve + A g - t=3, ... T, i, =7, ,
0= By U g/ Fy Yy an
2_ 1 I 2
8= 5= I & .
T-q' t=3 t
where 5 U -0 U, .

Using expressions (2.12) and (2,14), it is sfraightforward to show
that the twe-step estimator in (2.13) can be computed by OLS applied
to the following equation (which is obtained through adding the same
terms to both sides of equatiom (2,12))

Wk Sk
e =Py ¥ Aoy e x o) vpu )

* * ok *k
e, [1-p] + o, [x -0 el f Mo (= 7y =0 x 1))+

+

p [ut_l] + e t=3, .. T , (2.15)

£ 9
after evaluation of the regressand and the regressors between brackets
at consistent parameter estimator along the lines adopted for model 1.
The restriction .05 < X < .95 1is also imposed in a similar way.

The runs, for which the restriction 151 <1 is not satisfied, are
disregarded. '

The latter restriction has been satisfied in most cases, although we
do not use a block-diagonal matrix I' in the two-step and iterative
estimation procedure (for more details see e.g. Palm (13878)). When
iterating the Gauss-Newton estimator for model 2, the algorithm stops

if the change in the estimates of « A and p is smaller than .001

>
or when the number of iterations is iqual to 100. It also stops when
the restriction on X is violated for tﬁe second time. _

Firally, notice that for both models we ignore the first observations.
Whether this affects the conclusions about the finite sample properties,
as has been found By Beach and ¥acKinnon (1978) for a linear regression

model with autoregressive errors, has not been investigated.



3. The design of the experiments

The complete model used to generate the data is defined by the following

L3

. i .
Yy = o + oy iEO A X3 * U s 0 <A<l | (3.1a)
ue T opu g te s P £ A, Iel <1 (3.1b)
e, ~ IN (o, 02) vt, (3.1c)
X, = Yxt__1+nt, 0<y<1, {3.1d)
n, v IN (0, 10) Vi, (3.1e)

g, and n are independent for all t and +t' .

+f
The following parameter values are considered

a0=50, al=.9

»€ {.3,.6,.9}

p € {-.85,-.5,0, .5, .85}
y € {0, .‘?,'.95}

o € {5 ,iO} .

These values cover the range of plausible values for the parameters and for
the theoretical R2 . The sample size T is equal to 30 and 60. The process for
x, is stationary and satisfies the Grenander conditions, For vy = .85 , the

t

spectrum for =x_ approximately has the "typical shape of the spectrum of an

+
economic variable". Using a trending Xy would imply a standardisation of the

asymptotic distribution of the parameter estimate, which is different from VT,

Random samples of size 0 + T are generated from a uniform distribution.

They are transformed into ¢_ and n_ according to (3.ic) and (3.le) using

t t
the probability integral theorem. The random vapriables ug and X, are
generated according to (3.1b) and (3.1d) respectively, with u, =gy Vv 1 s
1-p

_ 1
and X, =g v —
1l-y

Then, for a given set of parameter a a, and » , sixty independent samples

s
of size 40 + T for the variable yto arelgenerated using the model (3.la),
with Xy = 0 for t <0 ., In order to guarantee the independence of Ve from
the initial wvalues of L only the last T observations are used in the
simulation study. As an alternative, we could have generated Yo using its
marginal density function implied by model (3.1) and the y 's t =1, ..., 7T

using equation (2.9).



4. The results of the simulations

For each of the sixty independent runs of an experiment, we estimate the
parameters using Liviatan's instrumental variables (IV) method, the two-step
(28) and the iterative Gauss-Newton (IGN) estimation procedure as described

in section 2. We compute and analyse the simulation mean and standard errors
(SE)} for these estimators. We do not investigate the existence of finite sample
moments of the estimators. Rather we are interested in the relationships
between simulation mean and SE's and the characteristics of the experimenté.

We model these relationship in response function equations and estimate them .
by OLS.

Furthermore, we focus cur analysis on the appropriateness of large sample
theory for finite sample situations. Possibly, the use of restricted estimators

guarantees the existence of their finite sample moments,

In order to reduce the variance of the simulation results, we apply the technique
of control vapiates (CV) to the outcome of the experiments (see e.g. Mikhail
(1972, 1975)). For a more detailed description of this variance reduction tech-
nique, the reader is referred to e.g. Hendry and Srba (1977) and the references
therein. In short, the basic idea can be presented as follews. Suppose that we
want to simulate the Ffinite sampie mean (assumed to exist) of an estimator 8

of the parameter O ., We can comﬁute the sample mean of the outcome 63 of m
independent runs

0. . - 4.1
1 9 ( )

8 =

LB
WM

]

' Consider now an alternative estimator 8° with known mean E (éo) . Then, the

quantity @ = @ - 8 + E(8°) will have the same expectation as 8§ . Its variance

var (8) = wvar (6) + var (8°) - 2 cov (B ,60) (4.2)

f

will be smaller than the variance of @ , provided

2 cov (é ,@0) > vapr (60) . ‘ (4.3) .

The technique of CV's consists in choosing an estimator 8° (called CV) with
known mean and satisfying (4.3) and to use © instead of @ as an estimator
of the unknown expectation of 9 . In order to assure a high positive corre-
lation between ©° and © , we derive the control variate 6° from the
asymptotic distribution of 8 . We choose ©° such that it has as finite

=
sample distribution the large sample distribution of 0 .
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For the IV estimator of © = (B' .p)}' in model 2,

" -1 - ey & L -
= ' ! = el
BIV {Z'3) .Z Y s Py (u_lu_l) al, d . ()
with zv = T1 1 ees 1 , X' = 1 1 . 1
X % cee Xpg ¥y Yo ee- Yooo
X2 X3 “en XT X2 X3 . X,F

and ﬁ-l = (ﬁl ,62 Lese aT-l) being the matrices of instruments and regressors
and the vector of lagged residuals respectively, the CV's are given by
8° = g7lzx) Z'y. (4.5a)
Iv
and
o) _ -1 N i- p2
Pry = E (ull u_l} u:l u. = E;:I;wzﬁ-(uil u} . - {4.5b)

"The control variate B?V has as expectation B and as distribution the

asymptotic distribution of gIV

any A
VT (BIV -8) ~ N (0,08.) , (4.6)
with @, = T £~ hz'x) E(z'vZ) ETN(X'2) , where V is the covariance
matrix of the vector v = (v, ,V, +¢s Vo)' .
, 273 T : -
The vector v 1is generated by an ARMA (1 ,1)-model Ve T TTOL Cx 0 with
autocovariances given by
2
E (V2) - 14+ A =-2pa 02
t 2
l1-p
(1 -p2) (p = 2) 2
E (vt vt~l) 5 o (4.7)
l1-p
E (vt vt*j) = pE (vt vt~j+1) s 322,383, ...

The control variate is centered at p and has as distribution the

o
O1v
asymptotic distributien of 5IV

A
VT (Bry - 0) ~ N (0,1 - 02y . (4.8)

-~

Notice that EIV and B are independent in large samples.

1v
The CV's given in (4.5) are expected to be almost perfectly correlated with
the IV estimates in large samples. As the two-step and the iterative estimator

have the same asymptotic distribution, we use the same CV's

o _ Ie} _ -1 i ' . _
0 = Oy ° E “(p'P) P'yv , | (4.9)
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where P' = - %% defined in (2.1%) but for + = 3, .,. T , so that it is
" of order 4 x T-2 , |
The mean of the control variates , E (@gs) is equal to the true parameter

values. The finite sample distribution of .eg is the same as the large sample

S
distribution of the 28-estimator

VT (8.. - ) 2 N (0,0 T B L(p'P)) (4.10)
25 *Ve * '

The matrix E(P'P) will be given in the appendix. _
The CV's for model 1 ave easily obtained from (4,5) and (4,9) by setting p = 0
and deleting the last columm of P .

In the tables 1 ~ 3 , we report the results of 12 experiments in detail, The
values of the parameters and the sample size in these experiments are close
to thdse often encountered in empirical econometric work,

in the columns 2, 7 and 13 of the tables 1 - 3 , the simulation mean (M) for
the IV, 2S and IGN estimators respectively of a parameter CH is given

-

= m '
0, = Z 9., . (4,11)
1 J".:l 1] '

g+

where m = 60 minus the number of times convergence is not achieved at step 100 or
. the restrictions on A and/or p are not satisfied.
In columns 3, 8 and 14 , the simulation standard errors (SSE) for the estimators

are computed as

=

z 512 : ’ 4.12
§1 (eij - ei) ] . (4.12)

A

m-1 3
In columns 4 and 9 , the mean of the control variates for the IV and 28 estimator
resp. (MCV) is given by
m o

% = L 3
. m

sE1 955 (4.13)

In columns 5 and 10 , the standard deviation of the control variates (SDCV)

are computed as

m _ 3
[[L 2 (&°, - )2 . (4.14)
fm-T =1 1] 1

In columns 11 and 15 , the square root of the mean of the variances of the
estimators computed from the conventional formula for the estimated standard

errors (ESE) is computed as

(4.15)
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where DEij is the i-th diagcnal element of 8? [E% Ej]-l for yun j, with

-2 - . . . .
Gj and Pj being evaluated at the 25 and iterated estimates respectively.

For the IV estimator, the appropriate formula QIV for the estimated variance
of glv is given in (4.6), with the moments replaced by their sample
equivalents. As the formula is almost never used in empirical work, we have

not computed ESE's for the IV estimator,

In colums 6 and 12 , the asymptotic standard errors (ASE)} are equal to the
square voot of the i-th diagonal element of the covariance matrices in (4.6)

and (4,10} divided by T. The reader can easily obtain a CV estimate of the
finite sample bias of the IV estimator [2S, IGN] by substr&cting column 4

[9,9] from colum 2 [7,13). Similarly, a CV estimate of the variance of

the IV estimator [28 , IGN] can be obtained by substracting the square of an
element in column 5 {10 ,10] from that of the corresponding element in column

3 {8,14) and adding that of the asymptotic standard errors in column 6 f12 ,12]/
Although a CV estimate of the variance is sometimesgreater than the simulation
‘variance, it is a more efficient estimate of the unknown variance. Notice also
that for most of the experiments, the SSE's are closer to the ASE's than the
ESE's. The variance of the estimates of o, is high and usually differsgsub—
stantially from its asymptotic value. In those cases, the results for ¢~ are
not very satisfactpry either. Whefher thié ig an indication of fhe non-existence
of finite sample moments of the estimators or of possible multicollinearity

0 ° for p # 0

and T = 40 , is much greater than that of the IV or IGN estimator. Although

has not been investigated. The bias of the 25 estimator of o

we do not report additional results for the parameter o. , we should mention

0
that they are not ailways satisfactory. In general, the results for the parameters

a , A and p are satisfactory. The bias and the SE's of the 25 and IGN

eitimators for these parameters are very similar. The results in the tables do
not indicate a dominance of IGN on the 25 estimator. For the 25 and IGN estimator
in medel 1, the SSE's are usually smaller than the ESE's, For model 2, both

are fairly good - especially when T = 60 - , except for the parameter X ,

for which the SSE is closer to the ASE than the ESE., The results in the tables
1-3 should give an overall picture of the finite sample properties of the

three estimators considered. Still, theyshould not be carried over straight-
forwardly to other experiments,

Next, in order to give an impression of the gain in precision when using CV
estimates for the mean of an estimator, we report in table 4 the ratio of the

simulation variance over the CV variance for several selected experiments, i.e.



ﬁExcept for hlgh values of A , there is usually a substantlal reduction in

the varlance of the CV estimates, indicating that (%.3) is Satleled When

” RVar i' 2, the gain in efflclency from the use of CV's is equal to that of
-dOublihg the number of runs. The response functions given in the tables 5-11

Summarize'the properties of the estimators for the experiments deszribed in

'  Séction 3. The tables 5 -7 correspond to model 1. The response functions in

tables 8 - 11 belong to medel 2.

 ”The pesponse functions (RF) are estimated using 36 experiments for model l and
':1H% experiments for model 2. In each experiment the sixty independent samples for

. &, and n, are reused, limiting thereby the computional costs at the price of

t t
some dependence. However under ergodicity, the results are not seriously affected.'

'?fThe functional form of response function is chosen after a detailed analysis
of-the plots of the outcome of the experiments as a function of the parameter
~values and the sémple size T (see e.g. Figures 1 -2)., Thereby the results of
the experiments were grouped according to the values of some parameters and
the sample size.

We always impose the restriction on the RF specifiecation that it should yield
the asymptotic result for large values of T. As a dependent variable in the

RF's for the bias, we use the standardized variable

vm (8, - 8.) .
_ i i :
By = ASE, (4.17)

for the simulation bias, and

- -0
vm (Gi - Oi)

BCVi = ASEi ! .I (4.18)

for‘the CV bias, wherem is equal to the number of runs for which the restricted
IGN estimatpr has converged. '

Usually m = 60 , but for values of A and ¥ close to one, m migth be
reduced to 40 . Notice that the RF's for the IV and 25 estimator are estimated

from the results of the runs for which the IGN has converged.

The'asymptotic distribution of the variable in (4,17) is N(0,1) . A log-linear
relationship between the SE's and the estimated residual variance and their
asymptotic values (ASE and 02) is used. Additional terms depending on the
remaining parameters and on T are needed in the specification in order to

explain the variation of the SE's and the estimated residual variance over the
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experiments. Through the log-linear specification, we hope to achieve
homoscedasticity (see e.g. Rac (1952))., For the 25 and the IGN estimator,
the RF's of the SSE's and the ESE's are very similar. As the ESE's are more
relevant fo the empirical econometrician, we report RF's for them only.
For the 1V estimator, the:RF's are estimated from the SSE-data. The CV

estimates of the SE's are computed as

secv = [sSE? - spev? + ase?]? (%.19)
for the IV estimator, and

2

1 v
SECV = [ESE? - spev® + ASEZ]Z (4.19b)

for the 28 and IGN estimator.

Usually the same specification for the RF's is retained whether direct simula-
tion estimates or CV estimates are to be explained.

In the tables, the figures between brackets arve standafd errors, An explanatory
variable written as (x > ¢) +takes the value 1 if x is larger than ¢ and the

value zero otherwise.
A

"The RF's reported in the tables 5-11 have been used to predict the outcome
of the independent experiments., In the tables 5-11, we give the value of

1
z (Oov - P- -)
.o ij i3
(1) = =1 — R (4.20)

S,
i

where 1 is the number of independent experiments to be predicted, Oij is
the standardized outcome of experiment j for the parameter i, Pij is the
prediction from the response function and Si is the residual variance of
the RF. Under the assumption that the RF is correctly specified and known,
Qi(l) is approximately x2—distributed;}with 1 degrees of freedon,.
Alternatively, we also use the asymptotic N(O, 1) distribution to predict the
standardized outcome of an experiment. Under the assumption that the large
sample distribution theory holds true for finite samples,

1

_ 2
Qu:(1) = I 0}

i sT; 01 (4.21)

is approximately x2—distrihuted with 1 degrees of freedom. Notice that the
standardized CV estimates computed from {4.18) have a large sample variance,
which is smaller than 1. Therefore the QAi for the CV estimates shouéd be
rescaled in order to obtain a test-statistic which is approximately ¥ -

distributed with 1 degrees of freedom.

1) This is not necessarily true for the predictions of the second order moments,
as we use log-linear relationships.
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The Qi's and QAi's , for 1 equal to 4 and 8, are computed from the
independent experiments given in the tables 1-3. As the cutcome of the experi-
ments for negative values of p exhibits great variabiiity, we predict two
additional independent experiments for p = -.6 , y = ,95 , L = .9, 62 =10
and T = 840 and 60 . The xz—values for these experiments are given in column 9
and 10 of the tables 8-11.2)

We shall now bhriefly draw some cconclusions from® the results in the tables
5-11. This should not dispense the reader from having a close look at the
results themselves. Except for the standardized bias of the IV estimator, the
form and the parameter values of the RF's for Bi and BCV, are very gimilar.
The residual standard deviation in the response functions for the bias decreases
when the CV estimates are used. This does not happen for the RF's of the SE's.
From the functional form of the response functions, it should be obvious that
values of A and y close to the unit circle, of p close.to -1 or a sample
eize T close to 30 heavily affect the finite sample properties of the three
estimators considered in this paper, A similar éonclusion has been drawn by 4 .-
Morrison (1970) for the small sample properties of Liviatan's IV estimator,

a time domain version of Hamman's (1965) two-step estimator and of the
iterative Steiglitz and McBride (1965) estimator in a géometfic distributed

lag model with uncorrelated errors.

The predictive power of the response functions is quite reascnable as is
indicated by the values of the Qi(l)'s « The RF for the bias of the IV
estimator does not predict very well. The predictive performance of the large
sample distribution theory in small sample situations is much less satisfactory.
In comparison with estimated residual variance Si of the RF's , & large
sample unit variance for the outcome of the experiments seems to be too small.
This conclusion is not modified, if we predict the four experiments for T = 60
separately using the large sample N{0,1) model. Notice also that the large
sample theory implies testable restrictions for the response functions. For
example, the coefficient of 1mn ASE should not be Significantly different

from one, while those of the remaining explanatory variables in the response
functions for the SE's or for 62 should not be significantly different from
zero, This is not always confirmed by our analysis. -

A majof conclusion from the tables 5-11 is that the resuits for 28 and IGH

are very similar, suggesting that for a sample of size T > 30 , the applied
econometrician can do without iterative estimation for the geometric distributed
lag model,

2) The asterisk in the tables indicates that the x2—test is based on 1-1 and 1-2
predictions for model 1 and 2 respectively, For the excluded runs, the
outcome for the CV estimate of the variance were negative. A negative R

as in table 8 gan occur inp models without constant term. In orxder to make the
response functions compatible with the asymptotic theory, we do not include a

congtant




dlfference between thelr models and ours 1s fhe non=-ne

fl of our model.

. An- 1mportant conclus;on from -our study is that the small s

'propertles of the two step and of fhe 1terat'“e Gauss-Ne:
imilar éral be - su

suggestlng that 1t W1ll 1n ge

'fstlmatar.

Our results; ?glve much ev1dence about 3he p0531 -e'

-f1n1te sample moments of the three estlmatars that we have o1

the restrlctlons 1mposed on A and p assure the exlstence :
finite samples. P0331bly, we cbtained good estlmates of thei aga
tions to the moments (see Sargan (1978)). Flgally, as the r38pon
presented in this paper yield the. asymptotic’ result for large S 3
us to answer questlons_such as "What is a_large sample?™, "MHow largs
That the answer to these questions depends on the true panametér.ﬁéiﬁg B

what one might think as being the true parameter values)_should.be'ﬁﬁkiou
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Appendix

We shall give the elements of the matris E (P'P) = A as functions of the
parameters of the model (3.1). Summation goes from t =3 +to T,

Denoting the i,j th element of the symmetric matrix A by a.,. , we have

ij
a,, = (r-2) (1-p)®
11
= ® o * - =
a5 .E [z (xt Dxt_l) (1-p)} 0
a3 = 0
dy = 0
a = B [T (x* - px )2] = (T-Z)[(l+92) E (xé% - 20 B (x*x¥ )]
22 t -1 t t Tg-1
= * * E = 3 - ¥
33 = B IEoGxp—ex ) (3T - exily)l
= -2y 2 o kk ) % L k%) _ T
= (T-2) a; [(1+p") E (xf xF¥) - o E (x} x¥¥) - o B (x} x}* )]
= * * =
3y T B GF-exyyu,lo= 0
= 2 T A
333 = Blog TGl - extly)7]
= - 2 2 %2y . *k k%
= (T-2) o) [(1+p") B (xF*") ~ 2 o B (xF* x¥* )]
= *k o Ek
gy * B log IOty - oexity)ug,)
= 0
a, = E[Tul.] = (1-2)
uy < o K 2 .
l-p

Next we must express the second order moment of x? and x:* as functions

of the parameters i , vy and! oi . Notice that x; and xi* are genera-

ted by a second and third order autoregressive process respectively

with mean zero

1

Xt Tt e T "
t GRS T T e (1) °

The variance of the AR(2) process X, is given by

cﬁ (L + vA)
) : *
1+ ('\r?\)2 - Yh - Y2 - )\2 + YSX + YAB - (YJ\)S

22

E (xt_

The first order autocovariance is

2
+ A
o, (y )

—_ -
E (xt xt—l)

1+ (YA)Q T YA - y2 TN YSA + yks - (YA)S
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The variance of x?* is

2 | °§

E (x**°) =
t L=w 0y —¥,0y =¥y 04
with 9, = ¥+ 2)
v, = - 42
by = 127
2
p, = +
1 T, 1=, L1 -y, - 600 + %) |
o b+, -

P2 T T, - 0 (0 * V)
Pg = Yy ey Ty vy

The first order autocovariance of xt* is

2

*k okk ) =z *k
E (x3* x¥*) E (xF*7) .

P1

The cross-covariances are
B. B

B Gk at%) = —ts g 2
t 1-2 1 -¥
cﬁ (@ - YQ)
where B =
1 (A - v+ (Yl)2 - ¥ - 72 - 12 + 731 + yka - (yh}3]
2 ' .
- By (1 -y )
By T 2
A (L -v7)
B, A B, ¥
1 2
E (x¥ xkk ) = + i
t Tt-1 1 - A2 1 - vyX
B, A2 B, v
—— -
E (xt X, - 12 + s v

Finally notice that the matrix E (Z'X) for the control variates of

the IV estimator is obtained in a similar way.
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Table 2. Simulation Results for Some Selected Experiments with Model 2
{(a, =50, a, = .8, vy = .85, g7 =10 , p = .4)
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As the ASE's for ¢ for the IV and the 2S-estimators are divided by the number of observations

used in the estimation, T-1 and T-2respectively , the ASE's for the 2S-éstimator are greater
than those for the IV estimator. '
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Table 4, Efficiency Gains for the Bias through the Use of Control
: Variates, defined as the Ratio of Variances in (4.16).
(y = .95 , o> = 10)

0 ol ey oW 28 | 16N
0 .3 30 oy 5.12 4.48 4,19
30 A 5,60 2.89 2.99

50 o 8.99 5.48 5,85

60 X 9.16 4,52 i 4,96

.9 30 & 3.92 - 1.0l | Lo

30 ) 2.08 ¢ 1.00 - 1,00

60 o 3.97 ~1.00 j 1,00

60 A 3.54 .99 | .99

.5 .3 30 o 3.13 3.78 | 3.71
30 A 2.05 1.47 1.49

30 p 1.56 2,71 2.64

60 o 6.30 §6.87 6.55

60 A 6.50 6.05 5.39

60 p 2.81 4,01 2.75

.9 30 a 3.79 | 1.01 1,02

30 A 2,13 1.00 1.02

30 0 1.06 o115 .76

60 N 4.12 1.02 1.01

60 A 2,87 .96 .99

60 o .89} 1,22 .98

.85 .3 30 o 1.45 3,24 3.30
30 A 1.01 1.41 1.73

30 o .87 . 1.38 1.38

60 o 2.52 4,65 ¥.71

60 A 3.45 2,75 . 2.86

60 o 1,78 2,82 2.82

.9 30 2, 2.91 1.10 - 1.12

30 A 2.09 L9l .93

30 0 .64 1.03 1.02

60 a, 3,95 1.15 1.07

60 A 2,77 . 1,04 1.02

80 o ' .66 1.47 1.086




Table 5.

Response Functions for «

in Model 1

1
—_ . .. P - 2 ... .
Estimator 8ZEiable Response Function R D.W Si Qi(q) Qﬂi(q)
IV B ﬁ%-[— 11.10 + 10.25 A + 1.37 o°] 500  1.81 72 15.81 9.30
{3.03) (3.09) (3.30)
28 B -5? [- 4.90 + 3.3 ;§(1_Y) ] 860  1.54 11.439 465 1,562.36
(13.486)  (.23) '~
IGN B -$§ [ 2.86 + 4.08 g i* jpn . .820 1,98 16,115 1.51 3,947.5
(18.96)  (.325) 7
v BCV 5%—[ 10.9% - 1.65 A - .75 o 460  1.15 1.15  7.03 .18
(1.46) (1.49) (.15)
25 BCV '6? [- 6.51 + 3.33 (1_1**1_Y ] 864 1.58 11.21 12.42 1,516.48
{13.18) (.22)
TGN BCV 5%—[ 1.24 4+ 4.07 1-A;Yl—y ] .824  2.02 15.86 15.70 3,872.03
(18.66) (.32)
s 1n SSE .93 1n ASE + 29.82 %-- 2.75 & - 20.08 %- .883  1.76 .082  30.85 .73
(.018) (2.99) (.23) (2.19)
2 -
28 in SE k.aae 1n ASE - .217 (;’é;) + 69.06 A2 %?)(*Y) 636 2.48  .207 2.25 3,38
.019) (.125) -~
. : W
TGN in SE .830 1n ASE - .211 (%#%%J + 87.65 A2 %7)(37) 505 2.21 .239 . .93 2.93
J(.218) (.14) -
. * *
v 1n SSE cv| .08 1n ASE + 7.30 %-- g.un .970  1.57 .073 442,71 1.03
(.01y) (1.72) (1.94)
) 3
25 in SE cv| .89 1n ASE - .20 (%%%%) + 69.00 A > %7)(**) 622 2.13 .23 63.82  3.32
- (.020) (.14)
2 .
TGN In SE CV] .89 -in ASE - .20 (fﬁ%%) + 68.90 A2 %7)(*Y) 518 2.01 .25 46.83  2.86
(.022) (.15)

- hi ~



Table 6. Response Funetions for X in Model 1
. Dep. . 2
Estimator Variable Response Functien R D.W. Si Qi(t}) QAi(L})
1 1 2
v B gp [ 20.93 - 2.u8 (333 - 2.51 o] .760  2.00  1.05 9.15 15,33
(3.74) (.20) (.u4)
25 B Fl1870 - 206 il 747 1.55 12,206  9.82  686.41
(14.47)  (.248) Y '
1 Ay
IGN B g7 [ 1817 - 8.18  rfli=s] .928  1.62  7.537 2.5 492,51
VI "(g.g7)  (.152) 7MY
1 1 2 .
IV BCV F [ 5.80 - 1.60 (z=) - .18 o] 790 2.19 .53 54,54 2.37
(1.89)  (.15) (.22)
1 Ay
28 BCY { 18,41 - 2,43 om——cm——c ] 741 1.59 12.35 4,51 743,91
VT (14l 53) (.25 -VE=V |
1 Ay
IGN BCY [13.89 - 3.15 {—pyres | .929  1.64  7.43 8.92  513.12
T Tels) (1s) T
v In SE .86 1n ASE + 13.14 () - 10.04 (%)— 2.27 E'f- 710 1,75 .24 1.69 .15
(.038) (7.28) (6.15) (.863) _
[ ) : 3
28 In SE [-.813 (225 ) + .799 In ASE + 69,73 (A > .7)(Ay) 721 1.88 401 2.09 7.11
(.232) (.026) (12.84)
1-) 0> .02 '
IGN ln SE ~.211 (7% ) + .890 1n ASE + 67.64 : .505 2,21 311 g.01 6.23
(.140) (.022) (7.30) -
| 1 A * *
IV In SSECV | .91 In ASE - 5.67 () + 8.99 (&) 90 1.67 18 12.73 .13
(.027) (3.53) (4.58)
1<) (A > '!)(M)2
28 ln SE CV |- .45  (Z7==) + .80 1n ASE + 70.08 . 710 1.82 LWL 42,30 7.08
(1.23) (.027) (13.12)
- 5
1GN 1n SE CV - .32 (Tl_;;g) + .83 1n ASE + s81.67 {221y 817  2.22 .33 57.48 6.23
(.19 ) (.022) (10.54)

-.93-..



Table 7. Response Functions for 02 in Model 1
Estimator { . °P- Response Funection 1-'{2 D.W S Q.(u) Q,.(u)
Variable ST i i ~ TAL
2 2 A 1 e N
iv in & 1.15 1n 0" + 24,98 (3) - 17.37 T+ uu.7 —%— LT04 2,19 314 4.16 2.79
(.074) (10.85) (7.83) (12.13) :
2 2 1 (x> J7)(x )2
25 in § 1.19 1In ¢° ~ 10.7% = + 102.64 = X2 726 2.33  .Lug . 861 4.69
(.105) (8.07) (11.46) :
2 ' 2 1 (A > 7)(17)2 _
IGN in & 1.18 1n ¢ - 10.77 Z + 98.26 = . L711 2.31 448 .841 4.18
(.105) (8.06) . (11.45)

_gz_



Table 8. Response Functions for «

in Model 2

1
o Dep. . 2 o \ .

Estimatory o - s .04 | Response Function R™ iD.W. Si Qi(S) QAi(S) Qi(2) QAi(Q)
v B ‘é% [ .uy o2 - 2.36 A+ .13 p + 9.568 A%y] 27 1.39 .76 16.41  8.05 .77  2.05
0 (.11) (1.67) (.58) {1.89) :

28 B Tjﬁ,-[-me..:z + 95,37 3% + 198.33 13(1-0)(1+72)] ,573 1.40 15,20 .88 350.04 37.81 15,392
(11.25) (30.37) (16.63)
IGN B -é@ [-55.75 + 119.24 A%p + 268.82 13(1-p)(1+72)] .576 1,09 20.54% 1,00 672.38 7.97 17,863
(15.20)  (L1.04) (22.49)
v BCY ﬁ%-[ 08 a2 ¢ 1.37 A+ 2.84 p + 344 A%y ] 32 1.19 .43 15.40  1.67 .69  0.25
(.06) {.91) ~(.32)  (l.08)
25 BCV ﬁ%-[-ua.zg +117.69 A2y1-132.67 la(l-p)(1+y2)] 564 1,40 15.31 45 327,01 45.i4 15,558
(10.91) (38.11) (15.34) .
IeN BCY ﬁ%-[-53.73 £161.31 A%y + 183.84 2° (1-0)(14y2)] 574 1.11 20.54 .63 637.82 17.32 18,005
(14.64) (51.14) (20,58) _
1 (1-0°) o2 .
v in SSE - 38.80 (3) + .63 1n ASE + 25,15 o = 1,18 o - 44 2,46 LML 2.86 - .60 4.06 243
(2.12) - (.038) (5.76) (.54)
1 2> (1-p)(i+y?)
28 1n SE =247 (575g) + .891 In ASE + 36.47 = . Lwig 2.13 .27 6,85 2,14 8.57 13,83
(.0u2) (.013) (1.52)
1 AS (l-p)(l+72)
IGN in SE =196  (z75) + .923 1n ASE + 28.42- o 563 1,18 .26 3.66.  1.14% 12,41 10,24
(.043) . (.012) (1.u6)
i * * * *
IV ln SSECV A3 () + .97 1n ASE .99 1.u44 .09 143,25 .99
(.u42) (.069)
1 ' 13(1-9)(1+ 2) -
28 1n SECV =.28  (g=5g) + .89 1n ASE + 36.54 T X 447 2,13 .27 8.79 2,07 8.31 13.83
(.0u43) (.013) (1.55)
1 13(1—9)(1+72) '
IGN 1n SECY =19 (m7g) + .92 1n ASE + 28,70 ; .576 1.21 .27 5.24 ° 1.04 10.64% 10,22
(.41) (.013) (1.50) '

- Lz_



Table $. Response Functions for A in Model 2
Estimator | D°P: Response Function R D.W. S 0.(8) Q,.(8) Q.(2) q,.(2)
Variable P M %y i Al <3 aivc’
Iv B ﬁ%-{ 16 02 - .96 A + 1.71 p - 13,90 Azyl .20 T4 1,57 3.66 8.80 .02 4.30
' (.11) (3.45) (1.19) (3.91)
28 B ﬁ%-{29.99 - 184.82 A° (1—p)(1+yz)] 247 2,39 34,66 3.08 325.10 33.05 16,819
(22.56) (27.89)
16N B ﬁ%-[sz.vo - 271.47 23 (1—p)(1+72)] 470 1.69 30,37 6.84 176.18 176,18 12,911
(19.76)  (24.44) : ' :
1v BV g [ .8 o= 9.76 & - 2,22 p - 2,18 A%y ] 43 1,90 .89 5.02 2,12 .11 1.21
(.11) (1.52) (.53) (1.73)
28 BCV 6%-[28.10 - 181.20 »° (l*p)(1+y2)] 240 2,40 37.72 %,30 311.85 1.78 165960
(22.60)  (27.95)
IGN BCV 6%-[50.32 - 267,93 2> (l-p)(l+72)] 461 1.70 30.51 .61 175,82 15,76 12,861
(19.85)  (24.56)
| 1 o (1-9%) -
v In SE - 31.32 (T9 + .69 1In ASE - 1,82 & + 23.72 -églh- 150 2.15 47 3.50 .26 4.1y .90
(6.19) (.033) (.62) (6.54)
1 A3 (1-p)(1472)
28 1n SE = +255 (z=55) + .848 In ASE + 45.99 7 - .659 2,06 .37 6.23 7.67 1.84 21.43
(.057) (.014) o (2.29) - - '
. 3 2
IGN 1n SE - 140 (T"-'lﬁ'ﬁ') + .888 1n ASE + 37,07 A (1-0)(1+y") .810 1.1t .34 4,01 5.42 3,96 16,88
(.051) (.013) (2.07) T
. . . - -
Iv In SECV |- 3.20 (%J + .93 1n ASE + .45 (T<30)(x>.7)(y> .7)[.970 1.66 .19  B1.69 1.79 -
(.91) (.012) (.07)
1 ls(l-p)(1+72) :
28 In SECV |- .27 (555g) + .85 1n ASE + 46.27 T 661 2,00 .38 5.68 7.63 46,40 21.43
{.058) (.0L14) (2.32)
| 1 A3 (1-p) (1+7%) |
IGN In SECV |- .15 (z=55) + .89 In ASE + 37.31 T .810 1.08 .34 3.58 5.36 3,99 16.88

(.052)

(.0;3) (2.09)

-83_



Table 10. Response E‘unctlonsfcr : o ) S ;
. Dep. _ VW, 5. 0.(8) Q,.(8) Qi(2) Q,.(2)
Estimator Variable | Respoqse Function | o Si Ql_ e _QA;__ . Ql__” _ QAJ.
iv B é% [ 6.56 =~ 105.51 p + 109,54 A3(1-p)(1+y2)] V740 3,04 11.71 16,06 380.51 9,29 4;523
: (g.06) (10.26)  (10.92) .
28 B 7 [-11.88 - 70.07 p + 53.18 3 (1-0) (1+y%)] 775 2.82  6.24 716 h4u.4y  7.56 - 1,433
(4.29) (5.47) (5.82) | .
3 : ; h
IGN B Vl'f (-17.12 - 71,01 p + 35.08 A (1-p) ('1+Y2)] .769 2.28 5.62 2.33 742.34 by, 4y 912.
(3.87)  (4.93) (5.25)
3
IV BCV ‘é? [-7.95 - 83.70p0 + 113.11 A (1-p) (14y2)) 738 2.95 10,81  14.20 473.10  6.69
(7.44)  (9.46) (10.08) -
: . L2
25 BV | op [-12.20 - 37.02 p + 56.52 3% (2-p) (147 )] .713 2.61 5.49 .03 166.71 .36
(3.78) (4.81) (5.12)
. . 2 '
1GN BCV V%vi—lv.sa - 37.97 o + 38.42 A% (1-p) (1+y )] .678 1.86 4,93 10.85 742,34 11,64
(3.39) (4.32) (4.60)
. _— _ ) .
v In SE  [-~8.30 (§) + .955 1In ASE + 24.44 %: - 3,10 %- .867 1.60 .087 4,13 .11
(.80) (.c08) (1.21) (.39)
, - _ S R s
28 In SE  F5.94()"+.942 1n ASE + 6.92 PE—1—~+18.83 & [857 1.90 .12 . 6.61 .39 10.21 1.05
- (1.09)"  (Lo11) (.56) (1.61) : SRR
1 N Ag(l-p)(lﬂrz) - ' 92 R
IGN in SE [6.96 (f) + .909 1ln ASE + .07 5 + 16.59(%-).B55 1.47 .21 B.46 1,56 250.3 15.8% -
(2.02) (.020) (1.03) (2.96) SRR
: 1 | 2 _ . o
A In SECV }5.84% (=) + .91 1n ASE + 18.76(%-) - 6.02(%) .836 . 1.73 L1 8,723 .13 2,566 - .03
KLy T (Lo15) (2.17) (.50)
28 In SECU §6.59 (&) + .90 1n ASE + 5.79 A(1=0)(1+Y7) 4 o4, 29¢L) | 340 1.94 .37 1.9y M5 20420 LBhR e
(3.48) (.035) (1.78) T (5.20) T :
) 1 3 i T O
16N In SECV  |-6.53 () + .88 In ASE + 6.62 A L1z0J(I¥Y ) 4 16.33(8) [543 1.78 .24 10.21 1.65  Iou 16,01

4

(2.29) (023) (1.1

(3.36)" |




(Model 2).
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